Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1442 - 1448
1 Sep 2021
McDonnell JM Evans SR McCarthy L Temperley H Waters C Ahern D Cunniffe G Morris S Synnott K Birch N Butler JS

In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy, accuracy, and relatability. It also explores some of the limitations of the technology, which act to constrain the widespread adoption of neural networks for diagnostic and prognostic use in spinal care. Finally, it describes the necessary considerations should institutions wish to incorporate ANNs into their practices. In doing so, the aim of this review is to provide a practical approach for spinal surgeons to understand the relevant aspects of neural networks.

Cite this article: Bone Joint J 2021;103-B(9):1442–1448.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 101 - 106
1 Jun 2020
Shah RF Bini SA Martinez AM Pedoia V Vail TP

Aims

The aim of this study was to evaluate the ability of a machine-learning algorithm to diagnose prosthetic loosening from preoperative radiographs and to investigate the inputs that might improve its performance.

Methods

A group of 697 patients underwent a first-time revision of a total hip (THA) or total knee arthroplasty (TKA) at our institution between 2012 and 2018. Preoperative anteroposterior (AP) and lateral radiographs, and historical and comorbidity information were collected from their electronic records. Each patient was defined as having loose or fixed components based on the operation notes. We trained a series of convolutional neural network (CNN) models to predict a diagnosis of loosening at the time of surgery from the preoperative radiographs. We then added historical data about the patients to the best performing model to create a final model and tested it on an independent dataset.