Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1238 - 1247
1 Oct 2019
Soreide E Denbeigh JM Lewallen EA Thaler R Xu W Berglund L Yao JJ Martinez A Nordsletten L van Wijnen AJ Kakar S

Aims. Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. Materials and Methods. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6). Results. At eight weeks, FiberTape alone or FiberTape-augmented autograft demonstrated increased biomechanical stability compared with autograft regarding ultimate load to failure (p = 0.035), elongation (p = 0.006), and energy absorption (p = 0.022). FiberTape-grafted samples also demonstrated increased bone mineral density in the bone tunnel (p = 0.039). Histological evaluation showed integration of all grafts in the bone tunnels by new bone formation, and limited signs of inflammation overall. A lack of prolonged inflammation in all samples was confirmed by quantification of inflammation biomarkers. However, no regeneration of ligament-like tissue was observed along the suture tape materials. Except for one autograft failure, no adverse events were detected. Conclusion. Our results indicate that FiberTape increases the biomechanical performance of intra-articular ligament reconstructions in a verified rabbit model at eight weeks. Within this period, FiberTape did not adversely affect bone tunnel healing or invoke a prolonged elevation in inflammation. Cite this article: Bone Joint J 2019;101-B:1238–1247


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 882 - 890
1 Jul 2018
Bertrand J Delfosse D Mai V Awiszus F Harnisch K Lohmann CH

Aims

Early evidence has emerged suggesting that ceramic-on-ceramic articulations induce a different tissue reaction to ceramic-on-polyethylene and metal-on-metal bearings. Therefore, the aim of this study was to investigate the tissue reaction and cellular response to ceramic total hip arthroplasty (THA) materials in vitro, as well as the tissue reaction in capsular tissue after revision surgery of ceramic-on-ceramic THAs.

Patients and Methods

We investigated tissue collected at revision surgery from nine ceramic-on-ceramic articulations. we compared our findings with tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene THAs, and four primary osteoarthritis synovial membranes. The latter were analyzed to assess the amount of tissue fibrosis that might have been present at the time of implantation to enable evaluation, in relation to implantation time, of any subsequent response in the tissues.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 27 - 30
1 Jan 2016
Whitehouse MR Parry MC Konan S Duncan CP

Periprosthetic joint infection (PJI) complicates between 0.5% and 1.2% primary total hip arthroplasties (THAs) and may have devastating consequences. The traditional assessment of patients suffering from PJI has involved the serological study of inflammatory markers and microbiological analysis of samples obtained from the joint space. Treatment has involved debridement and revision arthroplasty performed in either one or two stages.

We present an update on the burden of PJI, strategies for its diagnosis and treatment, the challenge of resistant organisms and the need for definitive evidence to guide the treatment of PJI after THA.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):27–30.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1253 - 1258
1 Sep 2011
Alpantaki K Katonis P Hadjipavlou AG Spandidos DA Sourvinos G

It has been proposed that intervertebral disc degeneration might be caused by low-grade infection. The purpose of the present study was to assess the incidence of herpes viruses in intervertebral disc specimens from patients with lumbar disc herniation. A polymerase chain reaction based assay was applied to screen for the DNA of eight different herpes viruses in 16 patients and two controls. DNA of at least one herpes virus was detected in 13 specimens (81.25%). Herpes Simplex Virus type-1 (HSV-1) was the most frequently detected virus (56.25%), followed by Cytomegalovirus (CMV) (37.5%). In two patients, co-infection by both HSV-1 and CMV was detected. All samples, including the control specimens, were negative for Herpes Simplex Virus type-2, Varicella Zoster Virus, Epstein Barr Virus, Human Herpes Viruses 6, 7 and 8. The absence of an acute infection was confirmed both at the serological and mRNA level.

To our knowledge this is the first unequivocal evidence of the presence of herpes virus DNA in intervertebral disc specimens of patients with lumbar disc herniation suggesting the potential role of herpes viruses as a contributing factor to the pathogenesis of degenerative disc disease.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 421 - 426
1 Mar 2011
Maličev E Barlič A Kregar-Velikonja N Stražar K Drobnič M

The aim of this study was to evaluate the cultivation potential of cartilage taken from the debrided edge of a chronic lesion of the articular surface. A total of 14 patients underwent arthroscopy of the knee for a chronic lesion on the femoral condyles or trochlea. In addition to the routine cartilage biopsy, a second biopsy of cartilage was taken from the edge of the lesion. The cells isolated from both sources underwent parallel cultivation as monolayer and three-dimensional (3D) alginate culture. The cell yield, viability, capacity for proliferation, morphology and the expressions of typical cartilage genes (collagen I, COL1; collagen II, COL2; aggrecan, AGR; and versican, VER) were assessed. The cartilage differentiation indices (COL2/COL1, AGR/VER) were calculated. The control biopsies revealed a higher mean cell yield (1346 cells/mg vs 341 cells/mg), but similar cell proliferation, viability and morphology compared with the cells from the edge of the lesion. The cartilage differentiation indices were superior in control cells: COL2/COL1 (threefold in biopsies (non-significant)); sixfold in monolayer cultures (p = 0.012), and 7.5-fold in hydrogels (non-significant), AGR/VER (sevenfold in biopsies (p = 0.04), threefold (p = 0.003) in primary cultures and 3.5-fold in hydrogels (non-significant)).

Our results suggest that the cultivation of chondrocytes solely from the edges of the lesion cannot be recommended for use in autologous chondrocyte implantation.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1090 - 1096
1 Aug 2008
Chotel F Unnithan A Chandrasekar CR Parot R Jeys L Grimer RJ

We have analysed the pattern of symptoms in patients presenting with synovial sarcoma to identify factors which led to long delays in diagnosis. In 35 children, the early symptoms and the results of clinical and radiological investigation were reviewed, along with the presumed diagnoses. The duration of symptoms was separated into patient delay and doctor delay.

Only half of the patients had one or more of the four clinical findings suggestive of sarcoma according to the guidance of the National Institute for Clinical Excellence at the onset of symptoms. Of the 33 children for whom data were available, 16 (48.5%) presented with a painless mass and in ten (30.3%) no mass was identified. Seven (21.2%) had an unexplained joint contracture. Many had been extensively investigated unsuccessfully. The mean duration of symptoms was 98 weeks (2 to 364), the mean patient delay was 43 weeks (0 to 156) and the mean doctor delay was 50 weeks (0 to 362). The mean number of doctors seen before referral was three (1 to 6) and for 15 patients the diagnosis was obtained after unplanned excision. Tumours around the knee and elbow were associated with a longer duration of symptoms and longer doctor delay compared with those at other sites. Delays did not improve significantly over the period of our study of 21 years, and we were unable to show that delay in diagnosis led to a worse prognosis.

Our findings highlight the variety of symptoms associated with synovial sarcoma and encourage greater awareness of this tumour as a potential diagnosis in childhood.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 830 - 835
1 Jun 2007
Hara Y Ochiai N Abe I Ichimura H Saijilafu Nishiura Y

We investigated the effect of progesterone on the nerve during lengthening of the limb in rats. The sciatic nerves of rats were elongated by leg lengthening for ten days at 3 mm per day. On alternate days between the day after the operation and nerve dissection, the progesterone-treated group received subcutaneous injections of 1 mg progesterone in sesame oil and the control group received oil only. On the fifth, tenth and 17th day, the sciatic nerves were excised at the midpoint of the femur and the mRNA expression level of myelin protein P0 was analysed by quantitative real time polymerase chain reaction. On day 52 nodal length was examined by electron microscopy, followed by an examination of the compound muscle action potential (C-MAP) amplitude and the motor conduction velocity (MCV) of the tibial nerve on days 17 and 52. The P0 (a major myelin glycoprotein) mRNA expression level in the progesterone-treated group increased by 46.6% and 38.7% on days five and ten, respectively. On day 52, the nodal length in the progesterone-treated group was smaller than that in the control group, and the MCV of the progesterone-treated group had been restored to normal. Progesterone might accelerate the restoration of demyelination caused by nerve elongation by activating myelin synthesis


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 672 - 685
1 May 2007
Goodrich LR Hidaka C Robbins PD Evans CH Nixon AJ

Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model.

A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated.

Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months.

Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model.

The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.