Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up.Aims
Methods
The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.Aims
Methods
Highly cross-linked polyethylene (HXLPE) has greatly improved the durability of total hip arthroplasty (THA) in young patients because of its improved wear characteristics. Few studies have followed this population into the second decade, and therefore the purpose of this investigation was to evaluate the clinical outcome for THA patients 50 years of age and younger at a minimum of 15 years postoperatively. The second purpose was to evaluate the radiological findings secondary to wear or mechanical failure of the implant. Between October 1999 and December 2005, 105 THAs were performed in 95 patients (53 female, 42 male) aged 50 years and younger (mean 42 years (20 to 50)). There were 87 patients (96 hips) that were followed for a minimum of 15 years (mean 17.3 years (15 to 21)) for analysis. Posterior approach was used with cementless fixation with a median head size of 28 mm. HXLPE was the acetabular bearing for all hips. Radiographs were evaluated for polyethylene wear, radiolucent lines, and osteolysis.Aims
Methods
We present the ten-year data of a cohort of patients, aged between
18 and 65 years (mean age 52.7 years; 19 to 64), who underwent total
hip arthroplasty. Patients were randomised to be treated with a
cobalt-chrome (CoCr) femoral head with an ultra-high molecular weight
polyethylene (UHMWPE), highly cross-linked polyethylene (XLPE) or
ceramic-on-ceramic (CoC) bearing surface. A total of 102 hips (91 patients) were randomised into the three
groups. At ten years, 97 hips were available for radiological and
functional follow-up. Two hips (two patients) had been revised (one
with deep infection and one for periprosthetic fracture) and three
were lost to follow-up. Radiological analysis was performed using
a validated digital assessment programme to give linear, directional
and volumetric wear of the two polyethylene groups.Aims
Patients and Methods
This paper describes the methodology, validation and reliability
of a new computer-assisted method which uses models of the patient’s
bones and the components to measure their migration and polyethylene
wear from radiographs after total hip arthroplasty (THA). Models of the patient’s acetabular and femoral component obtained
from the manufacturer and models of the patient’s pelvis and femur
built from a single computed tomography (CT) scan, are used by a
computer program to measure the migration of the components and
the penetration of the femoral head from anteroposterior and lateral radiographs
taken at follow-up visits. The program simulates the radiographic
setup and matches the position and orientation of the models to
outlines of the pelvis, the acetabular and femoral component, and
femur on radiographs. Changes in position and orientation reflect
the migration of the components and the penetration of the femoral
head. Validation was performed using radiographs of phantoms simulating
known migration and penetration, and the clinical feasibility of
measuring migration was assessed in two patients.Aims
Materials and Methods
Polyethylene wear debris can cause osteolysis
and the failure of total hip arthroplasty. We present the five-year
wear rates of a highly cross-linked polyethylene (X3) bearing surface
when used in conjunction with a 36 mm ceramic femoral head. This was a prospective study of a cohort of 100 THAs in 93 patients.
Pain and activity scores were measured pre- and post-operatively.
Femoral head penetration was measured at two months, one year, two
years and at five years using validated edge-detecting software
(PolyWare Auto). At a mean of 5.08 years (3.93 to 6.01), 85 hips in 78 patients
were available for study. The mean age of these patients was 59.08
years (42 to 73, the mean age of males (n = 34) was 59.15 years,
and females (n = 44) was 59.02 years). All patients had significant
improvement in their functional scores (p <
0.001). The steady
state two-dimensional linear wear rate was 0.109 mm/year. The steady
state volumetric wear rate was 29.61 mm3/year. No significant
correlation was found between rate of wear and age (p = 0.34), acetabular
component size (p = 0.12) or clinical score (p = 0.74). Our study shows low steady state wear rates at five years in
X3 highly cross-linked polyethylene in conjunction with a 36 mm
ceramic femoral head. The linear wear rate was almost identical
to the osteolysis threshold of 0.1 mm/year recommended in the literature. Cite this article:
There is no single standardised method of measuring
the orientation of the acetabular component on plain radiographs
after total hip arthroplasty. We assessed the reliability and accuracy
of three methods of assessing anteversion of the acetabular component
for 551 THAs using the
We conducted a systematic review and meta-analysis of randomised controlled trials comparing cross-linked with conventional polyethylene liners for total hip replacement in order to determine whether these liners reduce rates of wear, radiological evidence of osteolysis and the need for revision. The MEDLINE, EMBASE and COCHRANE databases were searched from their inception to May 2010 for all trials involving the use of cross-linked polyethylene in total hip replacement. Eligibility for inclusion in the review included the random allocation of treatments, the use of cross-linked and conventional polyethylene, and radiological wear as an outcome measure. The pooled mean differences were calculated for bedding-in, linear wear rate, three-dimensional linear wear rate, volumetric wear rate and total linear wear. Pooled risk ratios were calculated for radiological osteolysis and revision hip replacement. A search of the literature identified 194 potential studies, of which 12 met the inclusion criteria. All reported a significant reduction in radiological wear for cross-linked polyethylene. The pooled mean differences for linear rate of wear, three-dimensional linear rate of wear, volumetric wear rate and total linear wear were all significantly reduced for cross-linked polyethylene. The risk ratio for radiological osteolysis was 0.40 (95% confidence interval 0.27 to 0.58; I2 = 0%), favouring cross-linked polyethylene. The follow-up was not long enough to show a difference in the need for revision surgery.