Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 6 | Pages 732 - 738
1 Jun 2019
Liu Q He H Zeng H Yuan Y Long F Tian J Luo W

Aims

The aim of this study was to evaluate the efficacy of the surgical dislocation approach and modified trapdoor procedure for the treatment of chondroblastoma of the femoral head.

Patients and Methods

A total of 17 patients (ten boys, seven girls; mean age 16.4 years (11 to 26)) diagnosed with chondroblastoma of the femoral head who underwent surgical dislocation of the hip joint, modified trapdoor procedure, curettage, and bone grafting were enrolled in this study and were followed-up for a mean of 35.9 months (12 to 76). Healing and any local recurrence were assessed via clinical and radiological tests. Functional outcome was evaluated using the Musculoskeletal Tumour Society scoring system (MSTS). Patterns of bone destruction were evaluated using the Lodwick classification. Secondary osteoarthritis was classified via radiological analysis following the Kellgren–Lawrence grading system. Steinberg classification was used to evaluate osteonecrosis of the femoral head.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1582 - 1588
1 Dec 2016
Dewar DC Lazaro LE Klinger CE Sculco PK Dyke JP Ni AY Helfet DL Lorich DG

Aims. We aimed to quantify the relative contributions of the medial femoral circumflex artery (MFCA) and lateral femoral circumflex artery (LFCA) to the arterial supply of the head and neck of the femur. Materials and Methods. We acquired ten cadaveric pelvises. In each of these, one hip was randomly assigned as experimental and the other as a matched control. The MFCA and LFCA were cannulated bilaterally. The hips were designated LFCA-experimental or MFCA-experimental and underwent quantitative MRI using a 2 mm slice thickness before and after injection of MRI-contrast diluted 3:1 with saline (15 ml Gd-DTPA) into either the LFCA or MFCA. The contralateral control hips had 15 ml of contrast solution injected into the root of each artery. Next, the MFCA and LFCA were injected with a mixture of polyurethane and barium sulfate (33%) and their extra-and intra-arterial course identified by CT imaging and dissection. Results. The MFCA made a greater contribution than the LFCA to the vascularity of the femoral head (MFCA 82%, LFCA 18%) and neck (MFCA 67%, LFCA 33%). However, the LFCA supplied 48% of the anteroinferior femoral neck overall. Conclusion. This study clearly shows that the MFCA is the major arterial supply to the femoral head and neck. Despite this, the LFCA supplies almost half the anteroinferior aspect of the femoral neck. Cite this article: Bone Joint J 2016;98-B:1582–8


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1204 - 1213
1 Sep 2015
Lazaro LE Klinger CE Sculco PK Helfet DL Lorich DG

This study investigates and defines the topographic anatomy of the medial femoral circumflex artery (MFCA) terminal branches supplying the femoral head (FH). Gross dissection of 14 fresh–frozen cadaveric hips was undertaken to determine the extra and intracapsular course of the MFCA’s terminal branches. A constant branch arising from the transverse MFCA (inferior retinacular artery; IRA) penetrates the capsule at the level of the anteroinferior neck, then courses obliquely within the fibrous prolongation of the capsule wall (inferior retinacula of Weitbrecht), elevated from the neck, to the posteroinferior femoral head–neck junction. This vessel has a mean of five (three to nine) terminal branches, of which the majority penetrate posteriorly. Branches from the ascending MFCA entered the femoral capsular attachment posteriorly, running deep to the synovium, through the neck, and terminating in two branches. The deep MFCA penetrates the posterosuperior femoral capsular. Once intracapsular, it divides into a mean of six (four to nine) terminal branches running deep to the synovium, within the superior retinacula of Weitbrecht of which 80% are posterior. Our study defines the exact anatomical location of the vessels, arising from the MFCA and supplying the FH. The IRA is in an elevated position from the femoral neck and may be protected from injury during fracture of the femoral neck. We present vascular ‘danger zones’ that may help avoid iatrogenic vascular injury during surgical interventions about the hip. Cite this article: Bone Joint J 2015;97-B:1204–13


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 5 - 18
1 Jan 2014
Leunig M Ganz R

The use of joint-preserving surgery of the hip has been largely abandoned since the introduction of total hip replacement. However, with the modification of such techniques as pelvic osteotomy, and the introduction of intracapsular procedures such as surgical hip dislocation and arthroscopy, previously unexpected options for the surgical treatment of sequelae of childhood conditions, including developmental dysplasia of the hip, slipped upper femoral epiphysis and Perthes’ disease, have become available. Moreover, femoroacetabular impingement has been identified as a significant aetiological factor in the development of osteoarthritis in many hips previously considered to suffer from primary osteoarthritis.

As mechanical causes of degenerative joint disease are now recognised earlier in the disease process, these techniques may be used to decelerate or even prevent progression to osteoarthritis. We review the recent development of these concepts and the associated surgical techniques.

Cite this article: Bone Joint J 2014;96-B:5–18.


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1453 - 1457
1 Nov 2013
Zlotorowicz M Czubak J Caban A Kozinski P Boguslawska-Walecka R

The femoral head receives blood supply mainly from the deep branch of the medial femoral circumflex artery (MFCA). In previous studies we have performed anatomical dissections of 16 specimens and subsequently visualised the arteries supplying the femoral head in 55 healthy individuals. In this further radiological study we compared the arterial supply of the femoral head in 35 patients (34 men and one woman, mean age 37.1 years (16 to 64)) with a fracture/dislocation of the hip with a historical control group of 55 hips. Using CT angiography, we identified the three main arteries supplying the femoral head: the deep branch and the postero-inferior nutrient artery both arising from the MFCA, and the piriformis branch of the inferior gluteal artery. It was possible to visualise changes in blood flow after fracture/dislocation. Our results suggest that blood flow is present after reduction of the dislocated hip. The deep branch of the MFCA was patent and contrast-enhanced in 32 patients, and the diameter of this branch was significantly larger in the fracture/dislocation group than in the control group (p = 0.022). In a subgroup of ten patients with avascular necrosis (AVN) of the femoral head, we found a contrast-enhanced deep branch of the MFCA in eight hips. Two patients with no blood flow in any of the three main arteries supplying the femoral head developed AVN. Cite this article: Bone Joint J 2013;95-B:1453–7


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1176 - 1179
1 Sep 2012
Zlotorowicz M Czubak J Kozinski P Boguslawska-Walecka R

The femoral head receives its blood supply primarily from the medial femoral circumflex artery, with its deep branch being the most important.

In a previous study, we performed classical anatomical dissections of 16 hips. We have extended our investigation with a radiological study, in which we aimed to visualise the arteries supplying the femoral head in healthy individuals. We analysed 55 CT angiographic images of the hip.

Using 64-row CT angiography, we identified three main arteries supplying the femoral head: the deep branch of the medial femoral circumflex artery and the posterior inferior nutrient artery originating from the medial femoral circumflex artery, and the piriformis branch of the inferior gluteal artery. CT angiography is a good method for visualisation of the arteries supplying the femoral head. The current radiological studies will provide information for further investigation of vascularity after traumatic dislocation of the hip, using CT angiography.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 11 | Pages 1471 - 1474
1 Nov 2011
Zlotorowicz M Szczodry M Czubak J Ciszek B

We performed a series of 16 anatomical dissections on Caucasian cadaver material to determine the surgical anatomy of the medial femoral circumflex artery (MFCA) and its anastomoses. These confirmed that the femoral head receives its blood supply primarily from the MFCA via a group of posterior superior nutrient arteries and the posterior inferior nutrient artery. In terms of anastomoses that may also contribute to the blood supply, the anastomosis with the inferior gluteal artery, via the piriformis branch, is the most important. These dissections provide a base of knowledge for further radiological studies on the vascularity of the normal femoral head and its vascularity after dislocation of the hip


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1298 - 1303
1 Oct 2008
Grose AW Gardner MJ Sussmann PS Helfet DL Lorich DG

The inferior gluteal artery is described in standard anatomy textbooks as contributing to the blood supply of the hip through an anastomosis with the medial femoral circumflex artery. The site(s) of the anastomosis has not been described previously. We undertook an injection study to define the anastomotic connections between these two arteries and to determine whether the inferior gluteal artery could supply the lateral epiphyseal arteries alone. From eight fresh-frozen cadaver pelvic specimens we were able to inject the vessels in 14 hips with latex moulding compound through either the medial femoral circumflex artery or the inferior gluteal artery. Injected vessels around the hip were then carefully exposed and documented photographically.

In seven of the eight specimens a clear anastomosis was shown between the two arteries adjacent to the tendon of obturator externus. The terminal vessel arising from this anastomosis was noted to pass directly beneath the posterior capsule of the hip before ascending the superior aspect of the femoral neck and terminating in the lateral epiphyseal vessels. At no point was the terminal vessel found between the capsule and the conjoined tendon. The medial femoral circumflex artery receives a direct supply from the inferior gluteal artery immediately before passing beneath the capsule of the hip.

Detailed knowledge of this anatomy may help to explain the development of avascular necrosis after hip trauma, as well as to allow additional safe surgical exposure of the femoral neck and head.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 679 - 683
1 Jul 2000
Gautier E Ganz K Krügel N Gill T Ganz R

The primary source for the blood supply of the head of the femur is the deep branch of the medial femoral circumflex artery (MFCA). In posterior approaches to the hip and pelvis the short external rotators are often divided. This can damage the deep branch and interfere with perfusion of the head. We describe the anatomy of the MFCA and its branches based on dissections of 24 cadaver hips after injection of neoprene-latex into the femoral or internal iliac arteries. The course of the deep branch of the MFCA was constant in its extracapsular segment. In all cases there was a trochanteric branch at the proximal border of quadratus femoris spreading on to the lateral aspect of the greater trochanter. This branch marks the level of the tendon of obturator externus, which is crossed posteriorly by the deep branch of the MFCA. As the deep branch travels superiorly, it crosses anterior to the conjoint tendon of gemellus inferior, obturator internus and gemellus superior. It then perforates the joint capsule at the level of gemellus superior. In its intracapsular segment it runs along the posterosuperior aspect of the neck of the femur dividing into two to four subsynovial retinacular vessels. We demonstrated that obturator externus protected the deep branch of the MFCA from being disrupted or stretched during dislocation of the hip in any direction after serial release of all other soft-tissue attachments of the proximal femur, including a complete circumferential capsulotomy. Precise knowledge of the extracapsular anatomy of the MFCA and its surrounding structures will help to avoid iatrogenic avascular necrosis of the head of the femur in reconstructive surgery of the hip and fixation of acetabular fractures through the posterior approach