Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 680 - 687
1 Jul 2024
Mancino F Fontalis A Grandhi TSP Magan A Plastow R Kayani B Haddad FS

Aims. Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up. Methods. This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36). Results. There were no differences between the two treatment groups with regard to mean change in haemoglobin concentration (p = 0.477), length of stay (LOS, p = 0.172), mean polyethylene thickness (p = 0.065), or postoperative complication rates (p = 0.295). At the most recent follow-up, the primary robotic arm-assisted TKA group had a statistically significantly improved OKS compared with the revision UKA to TKA group (44.6 (SD 2.7) vs 42.3 (SD 2.5); p = 0.004) but there was no difference in the overall ROM (p = 0.056) or FJS between the two treatment groups (86.1 (SD 9.6) vs 84.1 (4.9); p = 0.439). Conclusion. Robotic arm-assisted revision of UKA to TKA was associated with comparable intraoperative blood loss, early postoperative rehabilitation, functional outcomes, and complications to primary robotic TKA at short-term follow-up. Robotic arm-assisted surgery offers a safe and reproducible technique for revising failed UKA to TKA. Cite this article: Bone Joint J 2024;106-B(7):680–687


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 525 - 531
1 Jun 2024
MacDessi SJ van de Graaf VA Wood JA Griffiths-Jones W Bellemans J Chen DB

The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases.

Cite this article: Bone Joint J 2024;106-B(6):525–531.


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 961 - 970
1 Sep 2023
Clement ND Galloway S Baron YJ Smith K Weir DJ Deehan DJ

Aims

The primary aim was to assess whether robotic total knee arthroplasty (rTKA) had a greater early knee-specific outcome when compared to manual TKA (mTKA). Secondary aims were to assess whether rTKA was associated with improved expectation fulfilment, health-related quality of life (HRQoL), and patient satisfaction when compared to mTKA.

Methods

A randomized controlled trial was undertaken, and patients were randomized to either mTKA or rTKA. The primary objective was functional improvement at six months. Overall, 100 patients were randomized, 50 to each group, of whom 46 rTKA and 41 mTKA patients were available for review at six months following surgery. There were no differences between the two groups.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes.

Cite this article: Bone Joint J 2023;105-B(2):102–108.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims

Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment.

Methods

A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims. Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. Methods. This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°). Results. TKA with functional alignment achieved balanced medial and lateral compartment pressures at 10° (25.0 psi (SD 6.1) vs 23.1 psi (SD 6.7), respectively; p = 0.140), 45° (21.4 psi (SD 5.9) vs 20.6 psi (SD 5.9), respectively; p = 0.510), and 90° (21.2 psi (SD 7.1) vs 21.6 psi (SD 9.0), respectively; p = 0.800) of knee flexion. Mean ICPD was 6.1 psi (SD 4.5; 0 to 14) at 10°, 5.4 psi (SD 3.9; 0 to 12) at 45°, and 4.9 psi (SD 4.45; 0 to 15) at 90° of knee flexion. Mean postoperative limb alignment was 2.2° varus (SD 1.0°). Conclusion. TKA using the functional alignment achieves balanced mediolateral soft-tissue tension through the arc of knee flexion as assessed using intraoperative pressure-sensor technology. Further clinical trials are required to determine if TKA with functional alignment translates to improvements in patient satisfaction and outcomes compared to conventional alignment techniques. Cite this article: Bone Joint J 2021;103-B(3):507–514


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1311 - 1318
3 Oct 2020
Huang Y Gao Y Li Y Ding L Liu J Qi X

Aims

Morphological abnormalities are present in patients with developmental dysplasia of the hip (DDH). We studied and compared the pelvic anatomy and morphology between the affected hemipelvis with the unaffected side in patients with unilateral Crowe type IV DDH using 3D imaging and analysis.

Methods

A total of 20 patients with unilateral Crowe-IV DDH were included in the study. The contralateral side was considered normal in all patients. A coordinate system based on the sacral base (SB) in a reconstructed pelvic model was established. The pelvic orientations (tilt, rotation, and obliquity) of the affected side were assessed by establishing a virtual anterior pelvic plane (APP). The bilateral coordinates of the anterior superior iliac spine (ASIS) and the centres of hip rotation were established, and parameters concerning size and volume were compared for both sides of the pelvis.


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 965 - 966
1 Aug 2020
Haddad FS Plastow R


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 276 - 279
1 Mar 2020
Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved. Cite this article: Bone Joint J 2020;102-B(3):276–279


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1262 - 1263
1 Oct 2018
Halawi MJ Haddad FS