The continual cycle of bone formation and resorption
is carried out by osteoblasts, osteocytes, and osteoclasts under
the direction of the bone-signaling pathway. In certain situations
the host cycle of bone repair is insufficient and requires the assistance
of bone grafts and their substitutes. The fundamental properties
of a bone graft are osteoconduction, osteoinduction, osteogenesis,
and structural support. Options for bone grafting include autogenous
and allograft bone and the various isolated or combined substitutes
of calcium sulphate, calcium phosphate, tricalcium phosphate, and
coralline hydroxyapatite. Not all bone grafts will have the same
properties. As a result, understanding the requirements of the clinical
situation and specific properties of the various types of bone grafts
is necessary to identify the ideal graft. We present a review of
the bone repair process and properties of bone grafts and their
substitutes to help guide the clinician in the decision making process. Cite this article:
1. Fifteen cases of bone transplantation for fibrous union of fractures of long bones are described, using boiled minced cancellous bone from cadavers. One transplant became infected but the infection responded to treatment. 2. In one patient with non-union of the shaft of the humerus, bony union was not obtained, but a good functional result obviated further treatment. 3. It is suggested that this relatively simple method of bone transplantation could be used more widely if its potentialities were appreciated more fully.