The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals.Aims
Methods
Surgical treatment of hip fracture is challenging; the bone is porotic and fixation failure can be catastrophic. Novel implants are available which may yield superior clinical outcomes. This study compared the clinical effectiveness of the novel X-Bolt Hip System (XHS) with the sliding hip screw (SHS) for the treatment of fragility hip fractures. We conducted a multicentre, superiority, randomized controlled trial. Patients aged 60 years and older with a trochanteric hip fracture were recruited in ten acute UK NHS hospitals. Participants were randomly allocated to fixation of their fracture with XHS or SHS. A total of 1,128 participants were randomized with 564 participants allocated to each group. Participants and outcome assessors were blind to treatment allocation. The primary outcome was the EuroQol five-dimension five-level health status (EQ-5D-5L) utility at four months. The minimum clinically important difference in utility was pre-specified at 0.075. Secondary outcomes were EQ-5D-5L utility at 12 months, mortality, residential status, mobility, revision surgery, and radiological measures.Aims
Methods
It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway. An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31hiEMCNhi endothelium. RNA sequencing analysis was performed using sorted CD31hiEMCNhi endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells.Aims
Materials and Methods
The aim of this study was to estimate the 90-day risk of revision for periprosthetic femoral fracture associated with design features of cementless femoral stems, and to investigate the effect of a collar on this risk using a biomechanical A total of 337 647 primary total hip arthroplasties (THAs) from the United Kingdom National Joint Registry (NJR) were included in a multivariable survival and regression analysis to identify the adjusted hazard of revision for periprosthetic fracture following primary THA using a cementless stem. The effect of a collar in cementless THA on this risk was evaluated in an Aims
Materials and Methods
The medial malleolus, once believed to be the primary stabilizer of the ankle, has been the topic of conflicting clinical and biomechanical data for many decades. Despite the relevant surgical anatomy being understood for almost 40 years, the optimal treatment of medial malleolar fractures remains unclear, whether the injury occurs in isolation or as part of an unstable bi- or trimalleolar fracture configuration. Traditional teaching recommends open reduction and fixation of medial malleolar fractures that are part of an unstable injury. However, there is recent evidence to suggest that nonoperative management of well-reduced fractures may result in equivalent outcomes, but without the morbidity associated with surgery. This review gives an update on the relevant anatomy and classification systems for medial malleolar fractures and an overview of the current literature regarding their management, including surgical approaches and the choice of implants. Cite this article: Abstract
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
Loosening of pedicle screws is a major complication of posterior
spinal stabilisation, especially in the osteoporotic spine. Our
aim was to evaluate the effect of cement augmentation compared with
extended dorsal instrumentation on the stability of posterior spinal
fixation. A total of 12 osteoporotic human cadaveric spines (T11-L3) were
randomised by bone mineral density into two groups and instrumented
with pedicle screws: group I (SHORT) separated T12 or L2 and group
II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were
augmented with cement unilaterally in each vertebra. Fatigue testing
was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz)
load with stepwise increasing peak force.Aims
Materials and Methods
End caps are intended to prevent nail migration
(push-out) in elastic stable intramedullary nailing. The aim of
this study was to investigate the force at failure with and without
end caps, and whether different insertion angles of nails and end caps
would alter that force at failure. Simulated oblique fractures of the diaphysis were created in
15 artificial paediatric femurs. Titanium Elastic Nails with end
caps were inserted at angles of 45°, 55° and 65° in five specimens
for each angle to create three study groups. Biomechanical testing
was performed with axial compression until failure. An identical
fracture was created in four small adult cadaveric femurs harvested
from two donors (both female, aged 81 and 85 years, height 149 cm and
156 cm, respectively). All femurs were tested without and subsequently
with end caps inserted at 45°. In the artificial femurs, maximum force was not significantly
different between the three groups (p = 0.613). Push-out force was
significantly higher in the cadaveric specimens with the use of
end caps by an up to sixfold load increase (830 N, standard deviation
(SD) 280 These results indicate that the nail and end cap insertion angle
can be varied within 20° without altering construct stability and
that the risk of elastic stable intramedullary nailing push–out
can be effectively reduced by the use of end caps. Cite this article:
It is becoming increasingly common for a patient
to have ipsilateral hip and knee replacements. The inter-prosthetic (IP)
distance, the distance between the tips of hip and knee prostheses,
has been thought to be associated with an increased risk of IP fracture.
Small gap distances are generally assumed to act as stress risers,
although there is no real biomechanical evidence to support this. The purpose of this study was to evaluate the influence of IP
distance, cortical thickness and bone mineral density on the likelihood
of an IP femoral fracture. A total of 18 human femur specimens were randomised into three
groups by bone density and cortical thickness. For each group, a
defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing
the appropriate lengths of component. The maximum fracture strength
was determined using a four-point bending test. The fracture force of all three groups was similar (p = 0.498).
There was a highly significant correlation between the cortical
area and the fracture strength (r = 0.804, p <
0.001), whereas
bone density showed no influence. This study suggests that the IP distance has little influence
on fracture strength in IP femoral fractures: the thickness of the
cortex seems to be the decisive factor. Cite this article:
We investigated a new intramedullary locking
nail that allows the distal interlocking screws to be locked to
the nail. We compared fixation using this new implant with fixation
using either a conventional nail or a locking plate in a laboratory
simulation of an osteoporotic fracture of the distal femur. A total
of 15 human cadaver femora were used to simulate an AO 33-A3 fracture
pattern. Paired specimens compared fixation using either a locking
or non-locking retrograde nail, and using either a locking retrograde
nail or a locking plate. The constructs underwent cyclical loading
to simulate single-leg stance up to 125 000 cycles. Axial and torsional
stiffness and displacement, cycles to failure and modes of failure
were recorded for each specimen. When compared with locking plate
constructs, locking nail constructs had significantly longer mean
fatigue life (75 800 cycles ( The new locking retrograde femoral nail showed better stiffness
and fatigue life than locking plates, and superior fatigue life
to non-locking nails, which may be advantageous in elderly patients. Cite this article:
Elastic stable intramedullary nailing (ESIN)
is generally acknowledged to be the treatment of choice for displaced diaphyseal
femoral fractures in children over the age of three years, although
complication rates of up to 50% are described. Pre-bending the nails
is recommended, but there are no published data to support this.
Using synthetic bones and a standardised simulated fracture, we
performed biomechanical testing to determine the influence on the
stability of the fracture of pre-bending the nails before implantation.
Standard ESIN was performed on 24 synthetic femoral models with
a spiral fracture. In eight cases the nails were inserted without
any pre-bending, in a further eight cases they were pre-bent to
30° and in the last group of eight cases they were pre-bent to 60°. Mechanical
testing revealed that pre-bending to 60° produced a significant
increase in the stiffness or stability of the fracture. Pre-bending
to 60° showed a significant positive influence on the stiffness
compared with unbent nails. Pre-bending to 30° improved stiffness
only slightly. These findings validate the recommendations for pre-bending,
but the degree of pre-bend should exceed 30°. Adopting higher degrees
of pre-bending should improve stability in spiral fractures and
reduce the complications of varus deformity and shortening.
We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm3) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.
Vertebral compression fractures are the most prevalent complication of osteoporosis and percutaneous vertebroplasty (PVP) has emerged as a promising addition to the methods of treating the debilitating pain they may cause. Since PVP was first reported in the literature in 1987, more than 600 clinical papers have been published on the subject. Most report excellent improvements in pain relief and quality of life. However, these papers have been based mostly on uncontrolled cohort studies with a wide variety of inclusion and exclusion criteria. In 2009, two high-profile randomised controlled trials were published in the
We evaluated the biomechanical properties of two different methods of fixation for unstable fractures of the proximal humerus.
We studied the effects of hyperbaric oxygen (HBO) and zoledronic acid (ZA) on posterior lumbar fusion using a validated animal model. A total of 40 New Zealand white rabbits underwent posterior lumbar fusion at L5–6 with autogenous iliac bone grafting. They were divided randomly into four groups as follows: group 1, control; group 2, HBO (2.4 atm for two hours daily); group 3, local ZA (20 μg of ZA mixed with bone graft); and group 4, combined HBO and local ZA. All the animals were killed six weeks after surgery and the fusion segments were subjected to radiological analysis, manual palpation, biomechanical testing and histological examination. Five rabbits died within two weeks of operation. Thus, 35 rabbits (eight in group 1 and nine in groups 2, 3 and 4) completed the study. The rates of fusion in groups 3 and 4 (p = 0.015) were higher than in group 1 (p <
0.001) in terms of radiological analysis and in group 4 was higher than in group 1 with regard to manual palpation (p = 0.015). We found a statistically significant difference in the biomechanical analysis between groups 1 and 4 (p = 0.024). Histological examination also showed a statistically significant difference between groups 1 and 4 (p = 0.036). Our results suggest that local ZA combined with HBO may improve the success rate in posterior lumbar spinal fusion.
The purpose of this study was to assess the stability of a developmental pelvic reconstruction system which extends the concept of triangular osteosynthesis with fixation anterior to the lumbosacral pivot point. An unstable Tile type-C fracture, associated with a sacral transforaminal fracture, was created in synthetic pelves. The new concept was compared with three other constructs, including bilateral iliosacral screws, a tension band plate and a combined plate with screws. The pubic symphysis was plated in all cases. The pelvic ring was loaded to simulate single-stance posture in a cyclical manner until failure, defined as a displacement of 2 mm or 2°. The screws were the weakest construct, failing with a load of 50 N after 400 cycles, with maximal translation in the craniocaudal axis of 12 mm. A tension band plate resisted greater load but failure occurred at 100 N, with maximal rotational displacement around the mediolateral axis of 2.3°. The combination of a plate and screws led to an improvement in stability at the 100 N load level, but rotational failure still occurred around the mediolateral axis. The pelvic reconstruction system was the most stable construct, with a maximal displacement of 2.1° of rotation around the mediolateral axis at a load of 500 N.
Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days.
There are three basic concepts that are important to the biomechanics of pedicle screw-based instrumentation. First, the outer diameter of the screw determines pullout strength, while the inner diameter determines fatigue strength. Secondly, when inserting a pedicle screw, the dorsal cortex of the spine should not be violated and the screws on each side should converge and be of good length. Thirdly, fixation can be augmented in cases of severe osteoporosis or revision. A trajectory parallel or caudal to the superior endplate can minimise breakage of the screw from repeated axial loading. Straight insertion of the pedicle screw in the mid-sagittal plane provides the strongest stability. Rotational stability can be improved by adding transverse connectors. The indications for their use include anterior column instability, and the correction of rotational deformity.
We investigated the effect of mitomycin-C on the reduction of the formation of peritendinous fibrous adhesions after tendon repair. In 20 Wistar albino rats the tendo Achillis was cut and repaired using a modified Kessler technique. The rats were divided into two equal groups. In group 1, an injection of mitomycin-C was placed between the tendon and skin of the right leg. In group 2, an identical volume of sterile normal saline was injected on the left side in a similar fashion. All the rats received mitomycin-C or saline for four weeks starting from the day of operation. The animals were killed after 30 days. The formation of peritendinous fibrous tissue, the inflammatory reaction and tendon healing were evaluated. The tensile strength of the repaired tendons was measured biomechanically. Microscopic evidence of the formation of adhesions and inflammation was less in group 1. There was no significant difference in the tensile load required to rupture the repaired tendons in the two groups. Mitomycin-C may therefore provide a simple and inexpensive means of preventing of post-operative adhesions.
Using an osteotomy of the olecranon as a model of a transverse fracture in 22 cadaver elbows we determined the ability of three different types of suture and stainless steel wire to maintain reduction when using a tension-band technique to stabilise the bone. Physiological cyclical loading simulating passive elbow movement (15 N) and using the arms to push up from a chair (450 N) were applied using an Instron materials testing machine whilst monitoring the osteotomy site with a video extensometer. Each osteotomy was repaired by one of four materials, namely, Stainless Steel Wire (7), No 2 Ethibond (3), No 5 Ethibond (5), or No 2 FiberWire (7). There were no failures (movement of >
2 mm) with stainless steel wire or FiberWire and no significant difference in the movements measured across the site of the osteotomy (p = 0.99). The No. 2 Ethibond failed at 450 N and two of the five of No. 5 Ethibond sutures had a separation of >
2 mm at 450 N. FiberWire as the tension band in this model held the reduction as effectively as stainless steel wire and may reduce the incidence of discomfort from the hardware. On the basis of our findings we suggest that a clinical trial should be undertaken