Patellofemoral arthroplasty (PFA) has experienced significant improvements in implant survivorship with second-generation designs. This has renewed interest in PFA as an alternative to total knee arthroplasty (TKA) for younger, active patients with isolated patellofemoral osteoarthritis (PF OA). The decision to select PFA over TKA balances the clinical benefits of sparing healthy knee compartments and ligaments against the risk of downstream conversion arthroplasty. We analyzed the cost-effectiveness of PFA versus TKA for the surgical management of isolated PF OA. We used a Markov transition-state model (Figure 1) to compare cost-effectiveness between PFA and TKA. Cohorts were aged 60 (base case) and 50 years. Lifetime costs (2015 USD), quality-adjusted life year (QALY) gains and incremental cost-effectiveness ratio (ICER) were calculated from a healthcare payer perspective. Annual revision rates were derived from the United Kingdom National Joint Registry and validated against the highest quality literature available. Deterministic and probabilistic sensitivity analysis was performed for all parameters against a $50,000/QALY willingness-to-pay. Results for the 50 year-old cohort were similar to those of the base case simulation.Purpose
Methods
There is a growing interest in surgical variables that are controlled by the orthopaedic surgeon, including lower leg alignment and soft tissue balancing. Since more tight control over these factors is associated with improved outcomes of total knee arthroplasty (TKA), several computer navigation systems have been developed. Many meta-analyses showed that mechanical axis accuracy and component positioning are improved using computer navigation and one may therefore expect better outcomes with computer navigation but studies showing this are lacking. Therefore, a systematic review with meta-analysis was performed on studies comparing functional outcomes of computer-navigated and conventional TKA. Goals of this study were to (I) assess outcomes of computer-navigated versus conventional TKA and (II) to stratify these results by the surgical variables the systems aim to control. A systematic search in PubMed, Embase and Cochrane Library was performed for comparative studies reporting functional outcomes of computer-navigated versus conventional TKA. Knee Society Scores (KSS) Total were most often reported and studies reporting this outcome score were included. Outcomes of computer-navigated and conventional TKA were compared (I) in all studies and (II) stratified by navigation systems that only controlled for lower leg alignment or systems that controlled for lower leg alignment and soft tissue balancing. Level of evidence was determined using the adjusted Oxford Centre for Evidence-Based Medicine tool and methodological quality was assessed using Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) tool. Outcomes were reported in mean difference (MD) with 95% confidence intervals [Lower Bound 95%, Upper Bound 95%].INTRODUCTION
METHODS
Successful clinical outcomes following unicompartmental knee arthroplasty (UKA) depend on component positioning, soft tissue balance and lower limb alignment, all of which can be difficult to achieve using manual instrumentation. A new robotic-guided technology has been shown to improve postoperative implant positioning and lower limb alignment in UKA but so far no studies have reported clinical results of robotic-assisted medial UKA. Goal of this study therefore was to assess outcomes of robotic-assisted medial UKA in a large cohort of patients at short-term follow-up. This multicenter study with IRB approval examines the survivorship and satisfaction of this robotic-assisted procedure coupled with an anatomically designed UKA implant at a minimum of two-year follow-up. A total of 1007 patients (1135 knees) underwent robotic-assisted surgery for a medial UKA from six surgeons at separate institutions in the United States. All patients received a fixed-bearing metal backed onlay implant as the tibial component between March 2009 and December 2011 (Figure 1). Each patient was contacted at minimum two-year follow-up and asked a series of five questions to determine implant survivorship and patient satisfaction. Survivorship analysis was performed using Kaplan-Meier method and worst-case scenario analysis was performed whereby all patients were considered as revision when they declined study participation. Revision rates were compared in younger and older patients (age cut-off 60 years) and in patients with different body mass index (body mass index cut-off 35 kg/m2). Two-sided chi-square tests were used to compare these groups.INTRODUCTION
METHODS
Medial and lateral unicompartmental knee arthroplasty (UKA) are both reliable treatment options for isolated osteoarthritis. Postoperative lower leg alignment is known to play an important role on short-term functional outcomes, which is an important argument for the use of robotic-assisted surgery. Since several anatomical and kinematic differences exist between both compartments, it seems inaccurate to aim for similar postoperative lower leg alignment in medial and lateral UKA. Purpose of this study was (I) to compare outcomes between both procedures and (II) to assess the role of preoperative and postoperative alignment on short-term outcomes in both procedures. Patients who underwent robotic-assisted medial or lateral UKA were included if they completed functional outcomes questionnaires preoperatively and postoperatively (Western Ontario and McMaster Universities Arthritis score) and completed an artificial joint awareness questionnaire (Forgotten Joint Score) postoperatively (not used preoperatively). A total of 143 medial UKA and 36 lateral UKA patients were included and mean follow-up was 2.4-years (range: 2.0 – 5.0 year). Postoperative alignment was measured using hip-knee-ankle radiographs with a standardized method. Alignment was categorized in medial and lateral UKA as undercorrection (3° to 7° varus or valgus, respectively), neutral (−1° to 3° varus or valgus, respectively), or overcorrection (3° to 7° valgus or varus, respectively). Outcomes were compared using independent t-tests and Pearson correlation analysis was performed to assess a correlation between alignment and outcomes.INTRODUCTION
METHODS