header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 140 - 140
1 May 2016
Yildirim G Gopalakrishnan A Davignon R Zeller A Pearle A Conditt M
Full Access

Introduction

Cementless unicondylar knee implants are intended to offer surgeons the potential of a faster and less invasive surgery experience in comparison to cemented procedures. However, initial 8 week fixation with micromotion less than 150µm is crucial to their survivorship1 to avoid loosening2.

Methods

Test methods by Davignon et al3 for micromotion were used to assess fixation of the MAKO UKR Tritanium (MAKO) (Stryker, NJ) and the Oxford Cementless UKR (Biomet, IN). Data was analyzed to determine the activities of daily living (ADL) that generate the highest forces and displacements4, 5. Stair ascent with 3.2BW compressive posterior tibial load was identified to be an ADL which may cause the most micromotion5. Based on previous studies6, 10,000 cycles was set as the run-time. The AP and IE profiles were scaled back to 60% for the Oxford samples to prevent the congruent insert from dislocating. A four-axis test machine (MTS, MN) was used. The largest size UKRs were prepared per manufacturer's surgical technique. Baseplates were inserted into Sawbones (Pacific Research, WA) blocks1. Femoral components were cemented to arbors. The medial compartment was tested, and the lateral implants were attached to balance the loads.

Five tests were conducted for each implant with a new Sawbones and insert for each test per the test method3. The ARAMIS System (GOM, Germany) was used to measure relative motion between the baseplate and the Sawbones at three anteromedial locations (Fig. 1). Peak-Peak (P-P) micromotion was calculated in the compressive and A/P directions.

FEA studies replicating the most extreme static loading positions for MAKO micromotion were conducted to compare with the physical test results using ANSYS14.5 (ANSYS, PA).