The utilization of silver as an anti-infective agent is a subject of debate within the scientific community, with recurring discussions surrounding its biocompatibility. Presently, galvanic silver coating finds widespread clinical application in mitigating infection risks associated with large joint arthroplasties. While some instances have linked this coating to sporadic cases of localized argyria, these occurrences have not exhibited systematic or functional limitations. To address concerns regarding biocompatibility, a novel approach has been devised for anti-infective implant coatings: encapsulating silver nitrate within a biopolymer reservoir for non-articulating surfaces. This poly-L-lactic acid layer releases silver ions gradually, thereby circumventing biocompatibility concerns. Female C57BL/6 mice were utilized as an experimental model, with 6x2 mm Ti6Al4V discs, coated with or without the biopolymer-protected silver coating, implanted subcutaneously on both sides of the vertebrae. Daily blood samples were collected, and serum was analyzed for C-reactive protein (CRP) and silver concentration. After three days, histopathological analyses were conducted on the surrounding soft tissue pouch.Aim
Method
The time to onset of symptoms after fracture fixation is still commonly used to classify fracture-related infections (FRI). Early infections (<2 weeks) can often be treated with debridement, systemic antibiotics, irrigation, and implant preservation (DAIR). Late infections (>10 weeks) typically require implant removal as mature, antibiotic-tolerant biofilms have formed. However, the recommendations for delayed infections (2–10 weeks) are not clearly defined. Here, infection healing and bone healing in early and delayed FRI is investigated in a rabbit model with a standardized DAIR procedure.
Aim
Method
Bacteriophages are remerging as alternative and adjunctive therapy for fracture-related infection (FRI). However, current administration protocols involve prolonged retention of a percutaneous draining tube with potential risk of developing superinfection. In this study, we applied a cocktail of Two evolved bacteriophages (MRSA-R14 and COL-R23) with improved antibiofilm activity against a clinical isolate (MRSA3) were tested in combination with vancomycin and a carboxymethylcellulose (CMC) hydrogel Aim
Method
In this study we investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. Specifically, we aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. In addition, we compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes. Skeletally mature female Wistar rats were implanted with Aim
Method
Debridement, Antibiotics, Irrigation, and implant Retention (DAIR) is a surgical treatment protocol suitable for some patients with fracture related infection (FRI). Clinically relevant pre-clinical models of DAIR are scarce and none have been developed in large animals. Therefore, this project aimed to develop a large animal model for FRI including a DAIR approach and compare outcomes after 2 or 5 weeks of infection. Swiss Alpine sheep (Aim
Method
We investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. We aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. We also compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes. Skeletally mature female Wistar rats were implanted with Staphylococcus epidermidis- contaminated polyetheretherketone (PEEK) screws in the proximal right tibia and monitored for 7 days. All animals received subcutaneous antibiotics (rifampicin plus cefazolin) for two weeks from day 7 to 21. In phase I of the study, rats were randomly assigned to receive 28 days of oral treatment with acetylsalicylic acid, ibuprofen, celecoxib, or vehicle control. In phase II, an additional group received seven days of celecoxib treatment from day 0 to 7. Bone changes were monitored using in vivo micro-CT and histology. Quantitative bacteriology was performed at euthanasia. Plasma samples were collected to measure cytokine levels on days 0, 6, 20, and 28. Combination antibiotic therapy resulted in treatment success in 85.71% of cases, while the addition of long-term celecoxib treatment reduced it to 45.45%. Long-term celecoxib treatment significantly reduced bone loss (33.85% mean difference [95% CI 14.12–53.58], p=0.0004 on day 6 bone fraction) and periosteal reaction (0.2760 μm mean difference [95% CI 0.2073–0.3448], p<0.0001 on day 14 periosteal thickness) during early infection compared to the control group. Short- term celecoxib treatment showed similar radiological results without a reduction in treatment success (88.9%). No differences in the inflammatory markers were observed. Our findings highlight the potential benefits of short-term use of celecoxib in improving bone fraction during the early post-infection period without impairing the efficacy of antibiotic therapy
Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability. In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic methicillin-resistant sheep. Antibiofilm activity of the antibiotic combination (gentamicin and vancomycin) was determined There was a nonsignificant reduction in biofilm with an increasing antibiotic concentration in vitro (p = 0.12), confirming the antibiotic tolerance of the MRSA biofilm. In the in vivo study, four out of five sheep from each treatment group were culture negative. Antibiotic delivery via hydrogel resulted in 10–100 times greater local concentrations for the first 2–3 days compared with PMMA and were comparable thereafter. Systemic concentrations of gentamicin were minimal or undetectable in both groups, while renal and liver function tests were within normal limits. This study shows that a single-stage revision with hydrogel or PMMA is equally effective, although the hydrogel offers certain practical benefits over PMMA, which make it an attractive proposition for clinical use.
Staphylococcus aureus is the leading pathogen in fracture-related infection (FRI). Virulence factors vary between different strains, which may have a decisive influence on the course of infection. Previous in vitro experiments, in vivo testing in wax moth larvae, and genomic analysis of S. aureus isolates from FRI identified a low- and high-virulent strain. These findings correlated with the acute course of FRI induced by the high-virulent pathogen, whereas the low-virulent strain caused a chronic FRI in its human host. However, the role of bacterial virulence in FRI is not completely understood. Therefore, the present study aimed to compare the identified high- and low-virulent S. aureus isolates in a murine FRI model. Skeletally mature C57Bl/6N mice received a femoral osteotomy stabilized by titanium locking plates. FRI was established by inoculation of either high-virulent S. aureus EDCC 5458 or low-virulent S. aureus EDCC 5464 in the fracture gap. Mice were euthanized 4 and 14 days after surgery, respectively. Severity and progression of infection were assessed in terms of clinical presentation, quantitative bacteriology, semiquantitative histopathologic evaluation, and serum cytokine profile.Aim
Method
Implant-associated osteomyelitis is a devastating complication with poor outcomes following treatment, especially when caused by antibiotic-resistant bacteria such as methicillin-resistant 12 female, 2 to 4 year old, Swiss Alpine Sheep were inoculated with MRSA at the time of intramedullary nail insertion in the tibia to develop chronic osteomyelitis. After 8 weeks sheep received a 2-stage revision protocol, with local and systemic antibiotics. Group 1 received the gold standard clinical treatment: systemic vancomycin (2 weeks) followed by rifampicin plus trimethoprim/sulfamethoxazole (4 weeks), and local gentamicin/vancomycin via PMMA. Group 2 received local gentamicin/vancomycin delivered via THH at both revision surgeries and identical systemic therapy to group 1. Sheep were euthanized 2 weeks following completion of antibiotic therapy. At euthanasia, soft tissue, bone, and sonicate fluid from the hardware was collected for quantitative bacteriology.Aim
Method
Focused high energy extracorporeal shockwave therapy (fhESWT) is used to support fracture healing in non-union cases and has been shown to have antibacterial effects. We trialed fhESWT as an adjunct to conventional treatment in a clinically relevant rabbit model of fracture related infection. A complete humeral osteotomy was performed in 31 rabbits and fixed with a 7-hole-LCP. A fracture-related infection (FRI) was established with Aim
Method
Silver is known for its excellent antimicrobial activity, including activity against multiresistant strains. The aim of the current study was to analyze the biocompatibility and potential influence on the fracture healing process a silver-coating technology for locking plates compared to silver-free locking plates in a rabbit model. The implants used in this study were 7-hole titanium locking plates, and plasma electrolytic oxidation (PEO) silver coated equivalents. A total of 24 rabbits were used in this study (12 coated, 12 non-coated). An osteotomy of the midshaft of the humerus was created with an oscillating saw and the humerus stabilized with the 7 hole locking plates with a total of 6 screws. X-rays were taken on day 0, week 2, 4, 6, 8, and 10 for continuous radiographical evaluation of the fracture healing. All animals were euthanized after 10 weeks and further assessment was performed using X-rays, micro-CT, non-destructive four-point bending biomechanical testing and histology. Furthermore, silver concentration was measured in the kidney, liver, spleen and brain.Aim
Methods
Open fractures still have a high risk for fracture-related Infection (FRI). The optimal duration of perioperative antibiotic prophylaxis (PAP) for open fractures remains controversial due to heterogeneous guidelines and highly variable prophylactic regimens in clinical practice. In order to provide further evidence with which to support the selection of antibiotic duration for open fracture care, we performed a preclinical evaluation in a contaminated rabbit fracture model. A complete humeral osteotomy in 18 rabbits was fixed with a 7-hole-LCP and inoculated with Aim
Method
Treatment regimens for fracture-related infection (FRI) often refer to the classification of Willenegger and Roth, which stratifies FRIs based on time of onset of symptoms. The classification includes early (<2 weeks), delayed (2–10 weeks) and late (>10 weeks) infections. Early infections are generally treated with debridement and systemic antibiotics but may not require implant removal. Delayed and late infections, in contrast, are believed to have a mature biofilm on the implant, and therefore, treatment often involves implant removal. This distinction between early and delayed infections has never been established in a controlled clinical or preclinical study. This study tested the hypothesis that early and delayed FRIs respond differently to treatment comprising implant retention. A complete humeral osteotomy in 16 rabbits was fixed with a 7-hole-LCP and inoculated with Aim
Method
The treatment of chronic orthopedic device-related infection (ODRI) often requires multiple surgeries and prolonged antibiotic therapy. In a two-stage exchange procedure, the treatment protocol includes device removal and placement of an antibiotic-loaded bone cement spacer to achieve high local antibiotic concentrations. At the second stage, further surgery is required to remove the spacer and replace it with the definitive device. We have recently developed a thermo-responsive hyaluronan hydrogel (THH) that may be loaded with antibiotics and used as delivery system. Since the material is bio-resorbable, it does not require surgical removal and may therefore be suitable for use as treatment strategy in a single-stage exchange. This aim of this study was to evaluate gentamicin sulphate (Genta)-loaded THH (THH-Genta) for treating a chronic Twelve Swiss-alpine sheep received an IM tibia nail and an inoculation of a gentamicin-sensitive clinical strain of Aim
Methods
The aim of this study was to define the role of implant material and surface topography on infection susceptibility in a preclinical The implants included in this experimental study were composed of: standard Electro polished Stainless Steel (EPSS), standard titanium (Ti-S), roughened stainless steel (RSS) and surface polished titanium (Ti-P). In an in vivo study, a rabbit humeral fracture model was used. Each rabbit received one of three Aim
Method