Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 87 - 87
1 Jan 2017
Zahn J Herrmann M Loibl M Alini M Verrier S
Full Access

Angiogenesis is a key factor in early stages of wound healing and is crucial for tissue regeneration. Gold standard for large bone defect treatment is the transplantation of autologous bone grafts, but is not entirely satisfying (e.g. limited amount). Cell therapies and tissue engineering approaches may overcome these problems by using cells and autologous blood components obtainable by less invasive procedures. Pre-clinical studies previously showed promising results combining endothelial progenitor cells (EPCs) and mesenchymal stem cell (MSCs) in polyurethane scaffolds in presence of PRP (1). A systemic investigation of the chemical and mechanical characteristics of different PRP gels formulations suggested their potential use as sustained autologous growth factor delivery system (2). Here we investigate PRP hydrogels as autologous injectable cell delivery systems for EPCs and MSCs and their efficacy in promoting fast neo-vascularization for bone repair applications.

PRP hydrogel and corresponding platelet lysate (PL) were produced from platelet concentrates as described before (3). MSCs were isolated by Ficoll-Paque centrifugation from human bone marrow (EK_regensburg12-101-0127), and cultured in alpha MEM containing 10% FCS and 5 ng/mL basic-FGF (GIBCO). EPCs (CD133+/CD34+) were isolated from MSC fractions using magnetic-activated cell sorting (MACS®) and further cultured in IMDM (GIBCO) containing 5% FCS and 5% PL. GFP positive HUVECs are from Angio-Proteomie, (Boston, USA). Prior to gel encapsulation, MSC and EPCs were pre-stained using PKH26-red® and PKH67-green® respectively. Cells in different proportions were encapsulated in 3D PRP gels, in FDA approved Fibrin gels and in Matrigel®. The gels were cultured in Ibidi microwells placed in an onstage incubator linked to an EVOS Auto Cell Imaging System. The cellular network formation capacity of HUVEC or EPCs and MSC in different proportions was analyzed for the 3 types of hydrogels using time lapse movies recorded over a period of 14 days. Parallel cultures were performed in a classical cell culture CO2 incubator and sample gels were taken at different time points for additional immunostaining and gene expression analysis.

Preliminary results indicate high cell viability in all of the three tested gels. PRP hydrogels present a favorable environment for the formation of a 3 dimensional cellular network in cell co-culture. The formation of these networks was apparent as early as 4 days after seeding. Networks increase in complexity and branching over time. The same was observed when cells were embedded in Matrigel®, which is known for its pro-angiogenic properties. Further experiments are currently in process looking at the involvement of MSCs in this process and the effect of PRP 3D co-culture on their differentiation.

PRP was previously shown as a potent growth factor delivery system for tissue engineering. In the present work, the high cell viability together with the 3 dimensional capillary-like networks observed at early time points suggest that PRP can also be used as an autologous cell delivery and pro-angiogenic system for bone tissue repair.