Histology is still considered the gold standard method for the evaluation of soft tissues in the musculoskeletal field, thanks to the possibility of studying structures using different staining and high magnification microscopy. To overcome the intrinsic limits of this method, contrast enhanced microtomographic (CE- microCT) protocols are constantly evolving to allow 3D study of soft tissues. However, no standardized approaches are available, and many concerns exist about the alterations induced to the samples. microCT/histology protocols were explored on human tendons and menisci. To enhance contrast tissues for microCT scanning 1) examethyldisilazane drying 2) 2% phosphotungstic acid (PTA) in alcoholic solution exposition and 3) 2% PTA in aqueous solution exposition were performed; to observe PTA contrast progression, three exposition and scanning times were selected. microCT images were compared to histological slices obtained from the same samples, after rehydration protocols, or from adjacent tissues portion, stained with Picrosirius red to highlight the peculiar collagenic structures.Introduction
Method
A comprehensive understanding of the self-repair abilities of menisci and their overall function in the knee joint requires three-dimensional information. However, previous investigations of the meniscal blood supply have been limited to two-dimensional imaging methods, which fail to accurately capture tissue complexity. In this study, micro-CT was used to analyse the 3D microvascular structure of the meniscus, providing a detailed visualization and precise quantification of the vascular network. A contrast agent (μAngiofil®) was injected directly into the femoral artery of cadaver legs to provide the proper contrast enhancement. First, the entire knee joint was analysed with micro-CT, then to increase the applicable resolution the lateral and medial menisci were excised and investigated with a maximum resolution of up to 4 μm. The resulting micro-CT datasets were analysed both qualitatively and quantitatively. Key parameters of the vascular network, such as vascular volume fraction, vessel radius, vessel length density, and tortuosity, were separately determined for the lateral and medial meniscus, and their four circumferential zones defined by Cooper. In accordance with previous literature, the quantitative micro-CT data confirm a decrease in vascular volume fraction along the meniscal zones. The highest concentration of blood vessels was measured in the meniscocapsular region 0, which is characterized by vascular segments with a significantly larger average radius. Furthermore, the highest vessel length density observed in zone 0 suggests a more rapid delivery of oxygen and nutrients compared to other regions. Vascular tortuosity was detected in all circumferential regions, indicating the occurrence of vascular remodelling in all tissue areas. In conclusion, micro-CT is a non-invasive imaging technique that allows for the visualization of the internal structure of an object in three dimensions. These advanced 3D vascular analyses have the potential to establish new surgical approaches that rely on the healing potential of specific areas of the meniscus.
Distal femoral osteotomy is an established successful procedure which can delay the progression of arthritis and the need for knee arthroplasty. The surgery, however, is complex and lengthy and consequently it is generally the preserve of highly experienced specialists and thus not widely offered. Patient specific instrumentation is known to reduce procedural complexity, time, and surgeons’ anxiety levels1 in proximal tibial osteotomy procedures. This study evaluated a novel patient specific distal femoral osteotomy procedure (Orthoscape, Bath, UK) which aimed to use custom-made implants and instrumentation to provide a precision correction while also simplifying the procedure so that more surgeons would be comfortable offering the procedure. Three patients (n=3) with early-stage knee arthritis presented with valgus malalignment, the source of which was predominantly located within the distal femur, rather than intraarticular. Using conventional techniques and instrumentation, distal femoral knee osteotomy cases typically require 1.5–2 hours surgery time. The use of bi-planar osteotomy cuts have been shown to improve intraoperative stability as well as bone healing times2. This normally also increases surgical complexity; however, multiple cutting slots can be easily incorporated into patient specific instrumentation.Abstract
Background
Presenting problem
High tibial osteotomy (HTO) is a joint preserving alternative to knee replacement for medial tibiofemoral osteoarthritis in younger, more active patients. The procedure is technically challenging and limited also by ‘one size fits all’ plates which can result in patient discomfort necessitating plate removal. This clinical trial evaluated A novel custom-made HTO system – TOKA (3D Metal Printing LTD, Bath, UK) for accuracy of osteotomy correction and improvements in clinical outcome scores. The investigation was a single-arm single-centre prospective clinical trial (IRCCS Istituto Ortopedico Rizzoli; ClinicalTrials.gov NCT04574570), with recruitment of 25 patients (19M/6F; average age: 54.4 years; average BMI: 26.8), all of whom received the TOKA HTO 3D planning and surgery. All patients were predominantly diagnosed with isolated medial knee osteoarthritis and with a varus deformity under 20°. Patients were CT scanned pre- and post-operatively for 3D virtual planning and correctional assessment. All surgeries were performed by the lead clinical investigator – a consultant knee surgeon with a specialist interest in and clinical experience of HTO. On average, Knee Society Scores (KSS) improved significantly (p<0.001) by 27.6, 31.2 and 37.2 percentage points respectively by 3-, 6- and 12-months post-surgery respectively. Other measures assessed during the study (KOOS, EQ5D) produced similar increases. Our early experience using custom implants is extremely promising. We believe the reduced profile of the plate, as well as the reduced invasiveness and ease of surgery contributed to faster patient recovery, and improved outcome scores compared to conventional techniques. These clinical outcome results compare very favourably other case-series with published KOOS scores using different devices.
Meniscal allograft transplantation (MAT) for patients with symptomatic meniscal loss has demonstrated good clinical results and survivorship. Factors that affect both functional outcome and survivorship have been reported in the literature. These are typically single-centre case series with relatively small numbers and conflicting results. Our aim was to describe an international, two-centre case series, and identify factors that affect both functional outcome and survival. We report factors that affect outcome on 526 patients undergoing MAT across two sites (one in the UK and one in Italy). Outcomes of interest were the Knee injury and Osteoarthritis Outcome Score four (KOOS4) at two years and failure rates. We performed multiple regression analysis to examine for factors affecting KOOS, and Cox proportional hazards models for survivorship.Aims
Methods
High tibial osteotomy for knee realignment is effective at relieving symptoms of knee osteoarthritis but the operation is surgically challenging. A new personalised treatment with simpler surgery using pre-operatively planned measurements from computed tomography (CT) imaging and 3D-printed implants and instrumentation has been designed and is undergoing clinical trial. The aim of this study was to evaluate the early clinical results of a preliminary pilot study evaluating the safety of this new personalised treatment. The single-centre prospective clinical trial is ongoing (IRCCS Istituto Ortopedico Rizzoli; IRB-0013355; ClinicalTrials.gov NCT04574570), with recruitment completed and all patients having received the novel custom surgical treatment. To preserve the completeness of the trial reporting, only surgical aspects were evaluated in the present study. Specifically, the length of the implanted osteosynthesis screws was considered, being determined pre-operatively eliminating intraoperative measurements, and examined post-operatively (n=7) using CT image processing (ScanIP, Synopsys) and surface distance mapping. The surgical time, patient discharge date and ease of wound closure were recorded for all patients (n=25).Abstract
Objectives
Methods
Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of medical imaging and gait analysis (GA), including GRF data, rarely is considered. The aim of this study was to report an original methodology merging Computed-Tomography (CT) with GA and GFR data in order to depict a realistic patient-specific representation of the knee loading status during motion before and after HTO. 25 MKO-affected patients were selected for HTO. All patients received pre-operative clinical scoring, and radiological/instrumental assessments; so far, these were also executed post-operatively at 6-month follow-up on 7 of these patients. State-of-the-art GA was performed during walking and more demanding motor tasks, like squatting, stair-climbing/descending, and chair-rising/sitting. An 8-camera motion capture system, combined with wireless electromyography, and force platforms for GRF tracking, was used together with an own established protocol. This marker-set was enlarged with 4 additional skin-based non-collinear markers, attached around the tibial-plateau rim. While still wearing these markers, all analyzed patients received full lower-limb X-ray in standing posture a CT scan of the knee in weight-bearing Subsequently, relevant DICOMs were segmented to reconstruct the morphological models of the proximal tibia and the additional reference markers, for a robust anatomical reference frame to be defined on the tibia. These marker trajectories during motion were then registered to the corresponding from CT-based 3D reconstruction. Relevant registration matrices then were used to report GRF data on the reconstructed tibial model. Intersection paths of GRF vectors with respect to the tibial-plateau plane were calculated, together with their centroids.Introduction and Objective
Materials and Methods
The medial opening-wedge high tibial osteotomy (OW-HTO) is an accepted option to treat the isolated medial compartment osteoarthritis (OA) in varus knee. Despite satisfactory outcomes were described in literature, consistent complication rate has been reported and the provided accuracy of coronal alignment correction using conventional HTO techniques falls short. Patient specific instrumentations has been introduced with the aim to reduce complications and to improve the intra-operative accuracy according to the pre-operative plan, which is responsible for the clinical result of the surgery. In this talk, an overview of the clinical results of HTO patient specific instrumentation available in literature will be performed. Moreover, preliminary intra-operative and clinical results of a new customised 3-D printed cutting guide and fixation plate for OW-HTO will be presented.
Physiological kinematics is very difficult to restore after total knee arthroplasty (TKA). A new model of medial stabilized (MS) TKA prosthesis has a high spherical congruence of the internal compartment, which guarantees anteroposterior (AP) stability associated with a flat surface of the insert in the lateral compartment, that allows a greater AP translation of the external condyle during knee flexion. The aim of our study is to evaluate, by dynamic radiostereometric analysis (RSA), the knee A cohort of 18 patients (72.1 ± 7.4 years old) was evaluated by dynamic RSA 9 months after TKA. The kinematic evaluation was carried out using the dynamic RSA tool (BI-STAND DRX 2), developed at our Institute, during the execution of sit to stand and lunge movements. The kinematic data were processed using the Grood and Suntay decomposition and the Low Point method. The patients performed two motor tasks: a sit-to-stand and a lunge. Data were related to the flexion angle versus internal-external, varus-valgus rotations and antero-posterior translations of the femur with respect to the tibia. During the sit to stand, the kinematic analysis showed the presence of a medial pivot, with a significantly greater (p=0.0216) anterior translation of the lateral condyle (3.9 ± 0.8 mm) than the medial one (1.6 ± 0.8 mm) associated with a femoral internal rotation (4.5 ± 0.9 deg). During the lunge, in the flexion phase, the lateral condyle showed a larger posterior translation than the medial one (6.2 ± 0.8 mm vs 5.3 ± 0.8 mm) associated with a femoral external rotation (3.1 ± 0.9 deg). In the extension phase, there is a larger anterior translation of the lateral condyle than the medial one (5.8 ± 0.8 mm vs 4.6 ± 0.8 mm) associated with femoral internal rotation (6.2 ± 0.9 deg). Analysing individual kinematics, we also found a negative correlation between clinical scores and VV laxity during sit to stand (R= −0.61) and that the higher femoral extra-rotation, the poorer clinical scores (R= 0.65). The finding of outliers in the VV and IE rotations analysis highlights the importance of a correct soft tissue balancing in order to allow the prosthetic design to manifest its innovative features.
Our aim was to perform a meta-analysis of the outcomes of revision
anterior cruciate ligament (ACL) reconstruction, comparing the use
of different types of graft. A search was performed of Medline and Pubmed using the terms
“Anterior Cruciate Ligament” and “ACL” combined with “revision”,
“re-operation” and “failure”. Only studies that reported the outcome
at a minimum follow-up of two years were included. Two authors reviewed
the papers, and outcomes were subdivided into autograft and allograft. Autograft
was subdivided into hamstring (HS) and bone-patellar tendon-bone
(BPTB). Subjective and objective outcome measures were analysed
and odds ratios with confidence intervals were calculated.Aims
Materials and Methods
The Pivot-shift phenomenon (PS) is known to be one of the essential signs of functional insufficiency of the anterior cruciate ligament (ACL). To evaluate the dynamic knee laxity is very important to accurately diagnose ACL injury, to assess surgical reconstructive techniques, and to evaluate treatment approaches. However, the pivot-shift test remains a subjective clinical examination difficult to quantify. The aim of the present study is to validate the use of an innovative non-invasive device based on the use of an inertial sensor to quantify PS test. The validation was based on comparison with data acquired by a surgical navigation system. The surgeon intraoperatively performed the PS tests on 15 patients just before fixing the graft required for the ACL reconstruction. A single accelerometer and a navigation system simultaneously acquired the joint kinematics. An additional optical tracker set to the accelerometer has allowed to quantify the movement of the sensor. The tibial anteroposterior acceleration obtained with the navigation system was compared with the acceleration acquired by the accelerometer. It is therefore estimated the presence of any artifacts due to the soft tissue as the test-retest repositioning error in the positioning of the sensor. It was also examined, the repeatability of the acceleration parameters necessary for the diagnosis of a possible ACL lesion and the waveform of the output signal obtained during the test. Finally it has been evaluated the correlation between the two acceleration measurements obtained by the two sensors. The RMS (root mean square) of the error of test-retest positioning has reported a good value of 5.5 ± 2.9 mm. While the amounts related to the presence of soft tissue artifacts was equal to 4.9 ± 2.6 mm. It was also given a good intra-tester repeatability (Cronbach's alpha = 0.86). The inter-patient similarity analysis showed a high correlation in the acceleration waveform of 0.88 ± 0.14. Finally the measurements obtained between the two systems showed a good correlation (rs = 0.72, p<0.05). This study showed good reliability of the proposed scheme and a good correlation with the results of the navigation system. The proposed device is therefore to be considered a valid method for evaluating dynamic joint laxity.
Anterior cruciate ligament (acl) reconstruction is one of the most commonly performed procedures in orthopedics for acl injury. While literature suggest short-term good-to-excellent functional results, a significant number of long-term studies report unexplained early oa development, regardless type of reconstruction. The present study reports the feasibility analysis and development of a clinical protocol, integrating different methodologies, able to determine which acl reconstruction technique could have the best chance to prevent oa. It gives also clinicians an effective tool to minimize the incidence of early oa. A prospective clinical trial was defined to evaluate clinical outcome, biochemical changes in cartilage, biomechanical parameters and possible development of oa. The most common reconstruction techniques were selected for this study, including hamstring single-bundle, single-bundle with extraarticular tenodesis and anatomical double-bundle. Power analysis was performed in terms of changes at cartilage level measurable by mri with t2 mapping. A sample size of 42 patients with isolated traumatic acl injury were therefore identified, considering a possible 10% to follow-up. Subjects presenting skeletal immaturity, degenerative tear of acl, other potential risk factors of oa and previous knee surgery were excluded. Included patients were randomized and underwent one of the 3 specified reconstruction techniques. The patients were evaluated pre-operatively, intra-operatively and post-operatively at 4 and 18 months of follow-up. Clinical evaluation were performed at each time using subjective scores (koos) and generic health status (sf-12). The activity level were documented (marx) as well as objective function (ikdc). Preliminary results allow to verify kinematic patterns during active tasks, including level walking, stair descending and squatting using dynamic roentgen sterephotogrammetric analysis (rsa) methodology before and after the injured ligament reconstruction. Intra-operative kinematics was also available by using a dedicated navigation system, thus to verify knee laxity at the time of surgery. Additionally, non-invasive assessment was possible both before the reconstruction and during the whole follow-up period by using inertial sensors. Integrating 3d models with kinematic data, estimation of contact areas of stress patterns on cartilage was also possible. The presented integrate protocol allowed to acquired different types of information concerning clinical assessment, biochemical changes in cartilage and biomechanical parameters to identify which acl reconstruction could present the most chondroprotective behavior. Preliminary data showed all the potential of the proposed workflow. The study is on-going and final results will be shortly provided.
Proper alignment (tibial alignment, femoral alignment, and overall anatomic alignment) of the prosthesis during total knee replacement is critical in maximizing implant survival[7] and to reduce polyethylene wear[1]. Poor overall anatomic alignment of a total knee replacement was associated with a 6.9 times greater risk of failure due to tibial collapse, that varus tibial alignment is associated with a 3.2 times greater risk[2] and valgus femoral alignment is associated with a 5.1 times greater risk of failure[7]. To reduce this variability intramedullary (IM) instruments have been widely used, with increased risk of the fat emboli rate to the lungs and brain during TKA[6] and possible increase of blood loss[4, 5]. Or, alternatively, navigation has been used to achieve proper alignment and to reduce morbidity[3]. Recently, for distal femoral resection, inertial sensors have been coupled to extramedullary (EM) instruments to improve TKA surgery in terms of femoral implant alignment, with respect to femoral mechanical axis, and reduced morbidity by avoidance of IM canal violation. The purpose if this study is to compare blood loss and alignment of distal femoral cut in three cohorts of patients: 1 Operated with inertial based cutting guide; 2 Operated with navigation instruments; 3 operated with conventional IM instruments. From September to November 2014 30 consecutive patients, eligible for TKA, were randomly divided into three cohorts with 10 patients each:x 1 “EM Perseus”, patient operated with EM inertial based instruments (Perseus, Orthokey Italia srl, Florence, Italy); 2 “EM Nav”, operated with standard navigated technique, where bone resections were planned and verified by mean of navigation system (BLUIGS, Orthokey Italia srl, Florence, Italy); 3 “IM Conv”, operated with standard IM instrumentation. All patients were operated by the same surgical technique, implanted TKA were mobile bearing PS models, Gemini (Waldemar Link, Hamburg, Germany) and Attune (Depuy, Warsaw, Indiana). Anteroposterior, lateral, and full-limb weightbearing views preoperatively and postoperatively at discharge were obtained, taking care of neutral limb rotational positioning in all patients enrolled in the study. Angles between femoral mechanical axis and implant orientation on frontal and lateral planes were measured with a CAD software (Rhinoceros 3, McNeel Europe, Rome, Italy) by two independent persons, average value was used for statistical analysis. Haemoglobin values were recorded at three time intervals: the day before surgery, at 24h follow-up and at patients discharge.Introduction
Material and methods
The purpose of this study was to examine whether three types of mobile-bearing PCL sacrificing TKA could restore the native knee translation and rotation. The primary hypothesis was that there are differences in knee kinematics and laxity between three different cruciate-substituting TKA designs: 1 with post-cam mechanism, 2 post-cam mechanism based on an inter-condylar ‘third condyle’ concept, 3 anterior stabilized with deep-dished highly congruent tibial insert; specifically, showing different femoral external rotation with flexion, different femoral translation with flexion and different laxity under stress test. The secondary hypothesis was that there is different clinical outcome between the three TKA designs at 2 years follow-up. We recruited 3 cohorts consisting of 30 patients each divided according 3 different TKA designs. All patients were operated with navigated procedure. During surgery preoperative and postoperative kinematics were recorded, in terms of femoral antero-posterior translation and tibial rotation during knee flexion, as also preoperative and postoperative at 2 years follow-up clinical scores have been acquired.Introduction
Methods
Providing proper rotational alignment of femoral component in total knee arthroplasty is mandatory to achieve correct kinematics, good ligament balance and proper patellar tracking. Recently functional references, like the function flexion axis (FFA), have been introduced to achieve this goal. Several studies reported the benefits of using the FFA but highlighted that further analyses are required to better verify the FFA applicability to the general clinical practice. Starting from the hypothesis that the FFA can thoroughly describe knee kinematics but that the joint kinematics itself can be different from flexion to extension movements, the purpose of this study was to analyse which factors could affect the FFA estimation by separately focusing on flexion and extension movements. Anatomical acquisitions and passive joint kinematics were acquired on 79 patients undergoing total knee arthroplasty using a commercial navigation system. Knee functional axis was estimated, from three flexion and extension movements separately acquired included in a range between 0° and 120°. For flexion and extension, in both pre- and post-implant conditions, internal-external (IE) rotations was analysed to track any changes in kinematic pattern, whereas differences in FFA estimation were identified by analysing the angle between the FFA itself and the transepicondylar axis (TEA) in axial and frontal plane.Introduction
Methods
Several methods, based on both functional and anatomical references, have been studied to reach the goal of a proper knee kinematics in total knee arthroplasty (TKA). However, at present, there is still a large debate about which is the most precise and accurate method to achieve the correct rotational implant positioning. One of the main methods already used in TKA to describe the tibiofemoral flexion-extension movement, based on a kinematic technique, thus not influenced by the typical variability related to the identification of anatomical references, is called “functional flexion axis” (FFA) method. The purpose of this study was to determine the repeatability in estimating knee functional flexion axis, thus evaluating the robustness of the method for navigated total knee arthroplasty. Passive kinematic and anatomical acquisitions were performed with a commercial navigation system on 87 patients undergoing TKA with primary osteoarthritis. Knee FFA was estimated, before and after implant positioning, from three flexion-extension movements between 0° and 120° (Figure 1). The angle between Functional Flexion Axis and an arbitrary clinical reference, the transepicondylar axis (TEA), was analysed in frontal and axial view (Figure 2). Repeatability Coefficient and Intraclass Correlation Coefficient (ICC) were estimated to analyse the reliability and the agreement in identifying the axis.Introduction
Methods
The use of a surgical navigation system has been demonstrated to allow to intraoperatively analyze knee kinematics during total knee arthroplasty (TKA), thus providing the surgeon with a quantitative and reproducible estimation of the knee functional behaviour. Recently severak authors used the computer assisted surgery (CAS) for kinematic evaluations during TKA, in particular to evaluate the achievement of a correct joint biomechanics after the prosthesis implantation. The major concern related to CAS is that the movements are usually passively performed, thence without a real active task performed by the subject. Starting from the hypothesis that the passive kinematics may properly describe the biomechanic behaviour of the knee, the main goal of this work was to intra-operatively compare the active kinematics of the limb, analysing a flexion movement actively performed by the patient, and the passive kinematics, manually performed by the surgeon. The anatomical and kinematic acquisitions were performed on 31 patients TKA using a commercial navigation system (BLU-IGS, Orthokey, USA). All the surgeries were performed under local anesthesia, which specifically allowed to acquire the passive and active kinematics including three flexion movements. Both in pre- and post-implant conditions, internal-external (IE) rotations and anterior-posterior (AP) translations were estimated to track any changes in the kinematic pattern.Introduction
Methods
The purpose of this study is to report results from a prospective multicenter study of a bioresorbable type I collagen scaffold used to replace tissue loss following irreparable lateral meniscus injuries. 49 non-consecutive patients (33M/16F; mean age 30.5 yrs, range 14.7–54.7 yrs) with irreparable lateral meniscus tears or loss requiring surgical treatment were prospectively enrolled at one of 7 EU centers. 11 patients (22%) had acute injuries of the lateral meniscus, while 38 (78%) had prior surgeries to the involved meniscus. Implantation of the LCMI (now Lateral Menaflex) was performed arthroscopically using an all-inside suturing technique (FASTFIX) combined with inside-out sutures in the more anterior meniscus aspect. Forty-three patients were evaluated with a 2 to 4-year follow-up (FU); mean FU duration was 45 months (range, 33–53 m). Patients were evaluated clinically and by self-assessment using Tegner activity and Lysholm function scores, as well as the Visual Analog Scales (VAS) for pain, and a satisfaction questionnaire. Evaluations were performed pre-operatively, 6 months, 1 year, 2 and 4 years after surgery. X-ray and/or MR-images were taken pre-operatively, and at 1 year and 2 years after surgery.INTRODUCTION
METHODS
The reported outcomes of unicompartmental knee replacement (UKR) for spontaneous osteonecrosis of the knee (SPONK) often derive from small series with an average followup of 5 years, enabling to generate meaningful conclusions. Therefore, we determined the long-term functional results and the 10-years survivorship of the implant in all patients with advanced SPONK of the medial tibio-femoral compartment treated with a unicompartmental knee arthroplasty at our institute. We retrospectively evaluated 84 consecutive patients with late stage SPONK. All patients received a pre-operative MRI to confirm the diagnosis, to exclude any metaphyseal involvement and to assess the absence of significative degenerative changes in the lateral and PF compartment. Mean age at surgery was 66 years and mean body mass index (BMI) was 28.9. In all cases, SPONK involved the medial compartment; in 77 cases the medial femoral condyle (MFC) was involved, while in 7 cases the pathology site was the medial tibial plateau (MTP). Radiological evaluation was conducted by 3 different radiologists and clinical evaluation according to KSS and WOMAC score was performed by 3 fellows from outside institutions, with no previous clinical contact with the patients, at a mean followup of 98 months.Background
Methods