Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 6 - 6
10 May 2024
Zaidi F Bolam S Goplen C Yeung T Lovatt M Hanlon M Munro J Besier T Monk A
Full Access

Introduction

Robotic-assisted total knee arthroplasty (TKA) has demonstrated significant benefits, including improved accuracy of component positioning compared to conventional jig-based TKA. However, previous studies have often failed to associate these findings with clinically significant improvements in patient-reported outcome measures (PROMs). Inertial measurement units (IMUs) provide a more nuanced assessment of a patient's functional recovery after TKA. This study aims to compare outcomes of patients undergoing robotic-assisted and conventional TKA in the early postoperative period using conventional PROMS and wearable sensors.

Method

100 patients with symptomatic end-stage knee osteoarthritis undergoing primary TKA were included in this study (44 robotic-assisted TKA and 56 conventional TKA). Functional outcomes were assessed using ankle-worn IMUs and PROMs. IMU- based outcomes included impact load, impact asymmetry, maximum knee flexion angle, and bone stimulus. PROMs, including Oxford Knee Score (OKS), EuroQol-Five Dimension (EQ-5D-5L), EuroQol Visual Analogue Scale (EQ-VAS), and Forgotten Joint Score (FJS-12) were evaluated at preoperative baseline, weeks 2 to 6 postoperatively, and at 3-month postoperative follow-up.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 68 - 68
10 Feb 2023
Zaidi F Bolam S Yeung T Besier T Hanlon M Munro J Monk A
Full Access

Patient-reported outcome measures (PROMs) have failed to highlight differences in function or outcome when comparing knee replacement designs and implantation techniques. Ankle-worn inertial measurement units (IMUs) can be used to remotely measure and monitor the bi-lateral impact load of patients, augmenting traditional PROMs with objective data. The aim of this study was to compare IMU-based impact loads with PROMs in patients who had undergone conventional total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and robotic-assisted TKA (RA-TKA).

77 patients undergoing primary knee arthroplasty (29 RA-TKA, 37 TKA, and 11 UKA) for osteoarthritis were prospectively enrolled. Remote patient monitoring was performed pre-operatively, then weekly from post-operative weeks two to six using ankle-worn IMUs and PROMs. IMU-based outcomes included: cumulative impact load, bone stimulus, and impact load asymmetry. PROMs scores included: Oxford Knee Score (OKS), EuroQol Five-dimension with EuroQol visual analogue scale, and the Forgotten Joint Score.

On average, patients showed improved impact load asymmetry by 67% (p=0.001), bone stimulus by 41% (p<0.001), and cumulative impact load by 121% (p=0.035) between post-operative week two and six. Differences in IMU-based outcomes were observed in the initial six weeks post-operatively between surgical procedures. The mean change scores for OKS were 7.5 (RA-TKA), 11.4 (TKA), and 11.2 (UKA) over the early post-operative period (p=0.144). Improvements in OKS were consistent with IMU outcomes in the RA-TKA group, however, conventional TKA and UKA groups did not reflect the same trend in improvement as OKS, demonstrating a functional decline.

Our data illustrate that PROMs do not necessarily align with patient function, with some patients reporting good PROMs, yet show a decline in cumulative impact load or load asymmetry. These data also provide evidence for a difference in the functional outcome of TKA and UKA patients that might be overlooked by using PROMs alone.