The aim of this study was to evaluate the correlation between
Salter’s criteria and Kalamchi’s classification of avascular necrosis
in patients treated for developmental dysphasia of the hip (DDH). The study involved a retrospective analysis of 123 patients (123
hips) with DDH treated by operative and non-operative reduction
before the age of two years, with a minimum follow-up of ten years.
Salter’s criteria (S1 to S4) were determined from radiographs obtained
at one to two years post-reduction, whilst the Kalamchi grade was determined
from radiographs obtained at ten or more years of age. Early post-reduction
radiographs were also used to evaluate the centre-head distance
discrepancy (CHDD) and the occurrence of a dome-shaped deformity
of the proximal femoral metaphysis (D-shaped metaphysis). The prognosis was described as good (Kalamchi grade K0 or KI),
fair (Kalamchi grade KII) or poor (Kalamchi grade KIII or KIV) for
analysis and correlation with the early Salter criteria, CHDD and
D-shaped metaphysis.Aims
Patients and Methods
Photodynamic therapy (PDT) uses the strong cytotoxicity of singlet oxygen and hyperthermia produced by irradiating excitation light on a photosensitizer. The phototoxic effects of indocyanine green (ICG) and near-infrared light (NIR) have been studied in different types of cancer cells. Plasma proteins bind strongly to ICG, followed by rapid clearance by the liver, resulting in no tumor-selective accumulation after systemic administration. Kimura et al. have proposed using a novel nanoparticle labeled with ICG (ICG-lactosome) that has tumor selective accumulation owing to enhanced permeability and retention (EPR) effect. In this study, we investigated the efficacy of PDT using ICG-lactosome and NIR for a bone metastatic mouse model of breast cancer. Cells from the human breast cancer cell line, MDA-MB-231 were injected into the right tibia of 26 anesthetized BALB/C nu/nu mice at a concentration. The mice were then randomly divided into three groups: the PDT group (n = 9), the laser (laser irradiation only) group (n = 9), and the control group (n = 8). PDT was performed thrice (7, 21, 35 days after cell inoculation) following ICG-lactosome administration via the tail vein 24 hours before irradiation. The mice were percutaneously irradiated with an 810-nm medical diode laser for 10 min. In the laser group, mice were irradiated following saline administration 24 hours before irradiation. Radiographic analysis was performed for 49 days after cell inoculation. The area of osteolytic lesion was quantified. The right hind legs of 3 mice were amputated 24 hours after the third treatment. Histological analysis was performed using hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining of sagittal sections. The data was analyzed using Tukey-Kramer post-hoc test. P-value of <0.05 was considered significant. X-ray on day 49 of the three groups are considered. The area of osteolytic lesion in the PDT group (7.9 ± 1.2 mm2: mean ± SD) was significantly smaller than that of the control (11.4 ± 1.4 mm2) and laser (11.9 ± 1.2 mm2) groups. In histological findings, we observed many TUNEL-positive cells in the metastatic tissue 24 hours after PDT. In the control and laser groups, TUNEL-positive cells were occasionally observed. We have previously reported the effect of ICG-lactosome-enhanced PDT on the cytotoxicity of human breast cancer cells
Hydroxyapatite and poly-L-lactide (HA/PLLA) composites are osteoconductive and biodegradable. They have already been used clinically to treat fractured bones by inducing osteosynthesis and serving as the bone filling material. During revision of total hip arthroplasty, we have grafted bone onto the bone defect and covered it with an HA/PLLA mesh instead of using a metal mesh on the non-load bearing portion of the cup (Figure 1). However, whether the interface between the HA/PLLA and the titanium alloy cup was stable remains unclear. The purpose of this study was to determine and compare the histological osteoconductivity and osteoinductivity of HA/PLLA and titanium alloy.Introduction
Objectives
Migration of the trial femoral head is a rarely occurring complication of total hip arthroplasty (THA) performed using the anterolateral approach (ALA). This migration of the trial femoral head under the rectus femoris is extremely risky because of the anatomical situation. Analyzing the morphological character of a case of migration may help us to avoid this risk. We analyzed the three-dimensional bone morphology using computed tomography (CT) scan images to investigate the physiological characteristics of five migration cases.Introduction
Objective
The initial stress distribution in the femur after total hip arthroplasty (THA) influences the remodeling of the bone and the clinical results. We conducted thermoelastic stress analysis to evaluate the surface stress distribution in femurs after THA in vitro and elucidated the changes in the stress distribution that were due to the stem design. Using this method, we can analyze the change in the sum of the principal stresses on the basis of the changes in temperature at the bone surface and visualize the change three-dimensionally. We compared the thermoelastic stress analysis results with the clinical results of specially shaped stems that have two flanges, one anterior and one posterior.Introduction
Objectives
Venous thromboembolisms are serious complications of arthroplasty of the lower extremities. Although early ambulation and active leg exercise is recommended, postoperative patients with surgical pain have difficulty in moving their legs. Therefore, we developed a novel leg exercise apparatus (LEX) to facilitate active leg movement even during the early postoperative period (Fig 1). LEX is a portable apparatus that allows patients to actively move their legs while in the supine position. LEX enables dorsiflexion, plantar flexion, combined eversion and inversion of the ankle, and multi-joint movement of the leg. To describe how LEX facilitates active movement of the leg and thereby increases venous flow in the lower extremities.Background
Objectives
The goal of joint-preserving surgery for the treatment of osteonecrosis of the femoral head (ONFH) is to delay or prevent osteoarthritic development. Bone marrow is a source of osteogenic progenitors that are key elements in the process of bone formation and fracture healing. We established an easy-to-use method using a conventional manual blood bag centrifugation technique traditionally used for extracting buffy coats, for concentration of nucleated cells and platelets from clinical bone marrow aspirates to obtain osteogenic progenitors and growth factors. However, it is unclear whether the surgical goals are really achieved and if so in which patients. The purpose of this study was to identify demographic, clinical, and radiographic factors predicting total hip arthroplasty (THA) conversion after CABMAT for the treatment of idiopathic ONFH. We retrospectively reviewed 123 patients (213 hips) who had CABMAT between 2003 and 2010. Sixty-five subjects (115 hips) were male and 58 (98 hips) were female with an average age at the time of CABMAT of 40.1 years. Of the 213 hips, 143 hips in 78 patients had corticosteroid-induced ONFH, 46 hips in 27 patients had alcohol-associated, and 24 hips in 18 patients had no etiological factors could be detected. The mean follow-up period was 60.5 months. The endpoint of evaluation was set as the time point which the patient required additional surgery (THA) depending on the spontaneous hip pain, x-ray change, and social back ground. The following factors were investigated: age, sex, body mass index (BMI), unilateral or bilateral, etiological factors, preoperative classification and staging, visual analogue scale (VAS), JOA clinical score. The 213 hips were divided into two groups: a THA conversion (THA) group and a non-THA conversion (non-THA) group. A multivariate analysis was performed using a logistic regression model.Introduction
Methods
We used three-dimensional software to assess different anatomic variables in the femur. The canal of Femur twisted slightly below the lesser trochanter in cases with a larger angle of anteversion. Accurate positioning of the joint prosthesis is essential for successful total hip arthroplasty (THA). To aid in tailoring of the prosthesis, we used three-dimensional software to assess different anatomic variables in the femur.Summary Statement
Introduction
Photodynamic therapy with ICG lactosome and near-infrared light has phototoxic effects on human breast cancer cells. With the same total energy, phototoxic effects depend on output of irradiation light rather than irradiation time. The phototoxic effects of indocyanine green (ICG) and near-infrared light have been studied in various fields. Plasma proteins bind strongly to ICG, which is followed by rapid clearance by the liver, resulting in no tumor selectivity after systemic administration. We have proposed a novel nanocarrier labeled with ICG (ICG lactosome) that has tumor selectivity due to its enhanced permeation and retention (EPR) effect. The aim of this study was to investigate Summary
Introduction
We have examined the process of fusion of the intertransverse processes and bone graft in the rabbit by in situ hybridisation and evaluated the spatial and temporal expression of genes encoding pro-α1 (I) collagen (COL1A1), pro-α1 (II) collagen (COL2A1) and pro-α1 (X) collagen (COL10A1). Beginning at two weeks after operation, osteogenesis and chondrogenesis occurred around the transverse process and the grafted bone at the central portion of the area of the fusion mass. Osteoblasts and osteocytes at the newly-formed woven bone expressed COL1A1. At the cartilage, most chondrocytes expressed COL2A1 and some hypertrophic chondrocytes COL10A1. In some regions, co-expression of COL1A1 and COL2A1 was observed. At four weeks, such expressions for COL1A1, COL2A1 and COL10A1 became prominent at the area of the fusion mass. From four to six weeks, bone remodelling progressed from the area of the transverse processes towards the central zone. Osteoblasts lining the trabeculae expressed a strong signal for COL1A1. At the central portion of the area of the fusion mass, endochondral ossification progressed and chondrocytes expressed COL2A1 and COL10A1. Our findings show that the fusion process begins with the synthesis of collagens around the transverse processes and around the grafted bone independently. Various spatial and temporal osteogenic and chondrogenic responses, including intramembranous, endochondral and transchondroid bone formation, progress after bone grafting at the intertransverse processes. Bone formation through cartilage may play an important role in posterolateral spinal fusion.
The multifunctional adhesion molecule CD44 is a major cell-surface receptor for hyaluronic acid (HUA). Recent data suggest that it may also bind the ubiquitous bone-matrix protein, osteopontin (OPN). Because OPN has been shown to be a potentially important protein in bone remodelling, we investigated the hypothesis that OPN interactions with the CD44 receptor on bone cells participate in the regulation of the healing of fractures. We examined the spatial and temporal patterns of expression of OPN and CD44 in healing fractures of rat femora by in situ hybridisation and immunohistochemistry. We also localised HUA in the fracture callus using biotinylated HUA-binding protein. OPN was expressed in remodelling areas of the hard callus and was found in osteocytes, osteoclasts and osteoprogenitor cells, but not in cuboidal osteoblasts which were otherwise shown to express osteocalcin. The OPN signal in osteocytes was not uniformly distributed, but was restricted to specific regions near sites where OPN mRNA-positive osteoclasts were attached to bone surfaces. In the remodelling callus, intense immunostaining for CD44 was detected in osteocyte lacunae, along canaliculi, and on the basolateral plasma membrane of osteoclasts, but not in the cuboidal osteoblasts. HUA staining was detected in fibrous tissues but little was observed in areas of hard callus where bone remodelling was progressing. Our findings suggest that OPN, rather than HUA, is the major ligand for CD44 on bone cells in the remodelling phase of healing of fractures. They also raise the possibility that such interactions may be involved in the communication of osteocytes with each other and with osteoclasts on bone surfaces. The interactions between CD44 and OPN may have important clinical implications in the repair of skeletal tissues.