header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 12 - 12
1 Dec 2021
Samsami S Pätzold R Winkler M Herrmann S Müller PE Chevalier Y Augat P
Full Access

Abstract

Objective

Bi-condylar tibia plateau fractures are one of challenging injuries due to multi-planar fracture lines. The risk of fixation failure is correlated with coronal splits observed in CT images, although established fracture classifications and previous studies disregarded this critical split. This study aimed to experimentally and numerically compare our innovative fracture model (Fracture C), developed based on clinically-observed morphology, with the traditional Horwitz model (Fracture H).

Methods

Fractures C and H were realized using six samples of 4th generation tibia Sawbones and fixed with Stryker AxSOS locking plates. Loading was introduced through unilateral knee replacements and distributed 60% medially. Loading was initiated with six static ramps to 250 N and continued with incremental fatigue tests until failure. Corresponding FE models of Fractures C and H were developed in ANSYS using CT scans of Sawbones and CAD data of implants. Loading and boundary conditions similar to experimental situations were applied. All materials were assumed to be homogenous, isotropic, and linear elastic. Von-Mises stresses of implant components were compared between fractures.