header advert
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 109 - 109
1 Apr 2019
Lundberg HJ Mell SP Fullam S Wimmer MA
Full Access

Background

Aseptic loosening is the leading cause of total knee arthroplasty (TKA) failure in the long term, of which osteolysis from polyethylene wear debris remains a problem that can limit the lifetime of TKA past the second decade. To help speed up design innovations, our goal was to develop a computational framework that could efficiently predict the effect of many sources of variability on TKA wear—including design, surgical, and patient variability.

Methods

We developed a computational framework for predicting TKA contact mechanics and wear. The framework accepts multiple forms of input data: patient-specific, population-specific, or standardized motions and forces. CAD models are used to create the FEA mesh. An analytical wear model, calibrated from materials testing (wheel-on-flat) experiments, is fully integrated into the FEA process. Isight execution engine runs a design of experiments (DOE) analysis with an outcome variable, such as volumetric wear, to guide statistical model output. We report two DOE applications to test the utility of the computational framework for performing large variable studies in an efficient manner: one to test the sensitivity of TKA wear to the femoral center of rotation, and the second to test the sensitivity of TKA wear to gait input perturbations.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 31 - 31
1 Apr 2018
Simon JC Della Valle CJ Wimmer MA
Full Access

Introduction

Bicruciate-retaining (BiCR) total knee replacements (TKRs) were designed to improve implant performance; however, functional advantages during daily activity have yet to be demonstrated. Although level walking is a common way to analyze functionality, it has been shown to be a weak test for identifying gait abnormalities related to ACL pathologies. The goal of this study is to set up a functional motion analysis test that will examine the effects of the ACL in TKR patients by comparing knee kinematics, kinetics, and muscle activation patterns during level and downhill walking for patients with posterior-cruciate retaining (PCR) and BiCR TKRs.

Methods

Motion and electromyography (EMG) data were collected simultaneously for 12 subjects (4/8 m/f, 64±11 years, 31.3±7.3 BMI, 6/6 right/left) with BiCR TKRs and 15 subjects (6/9 m/f, 67±7 years, 30.5±5.1 BMI, 4/11 right/left) with PCR TKRs during level and downhill walking using the point cluster marker set. Surface electrodes were placed on the vastus medialis obliquus (VMO), rectus femoris (RF), biceps femoris (BF), and semitendinosus (ST) muscles. EMG data are reported as percent relative voluntary contraction (%RVC), normalizing the signal during downhill walking to the mean maximum EMG value during level walking.