Stimulation of the mechanosensitive ion channel, Piezo1 promotes bone anabolism and SNPs in the Piezo1 locus are associated with changes in fracture risk. Osteocytes function as critical regulators of bone homeostasis by sensing mechanical signals. The current study used a human, cell-based physiological, 3D in vitro model of bone to determine whether loading of osteocytes in vitro results in upregulation of the Piezo1 pathway. Human Y201 MSCs, embedded in type I collagen gels and differentiated to osteocytes for 7-days, were subjected to pathophysiological load (5000 µstrain, 10Hz, 5 mins; n=6) with unloaded cells as controls (n=4). RNA was extracted 1-hr post load and assessed by RNAseq analysis. To mimic mechanical load and activate Piezo1, cells were differentiated to osteocytes for 13 days and treated ± Yoda1 (5µM, 2- and 24-hs, n=4); vehicle treated cells served as controls (n=4). RNA was subjected to RT-qPCR and data normalised to the housekeeping gene, YWHAZ. Media was analysed for IL6 release by ELISA. Mechanical load upregulated Piezo1 gene expression (16.5-fold, p<0.001) and expression of the transcription factor NFATc1, and matricellular protein CYR61, known regulators of Piezo1 mechanotransduction (3-fold; p= 5.0E-5 and 6.8-fold; p= 6.0E-5, respectively). After 2-hrs, Yoda1 increased the expression of the early mechanical response gene, cFOS (11-fold; p=0.021), mean Piezo1 expression (2.3-fold) and IL-6 expression (103-fold, p<0.001). Yoda1 increased the release of IL6 protein after 24 hours (7.5-fold, p=0.001). This study confirms Piezo1 as an important mechanosensor in osteocytes. Piezo1 activation mediated an increase in IL6, a cytokine that drives inflammation and bone resorption providing a direct link between mechanical activation of Piezo1, bone remodeling and inflammation, which may contribute to mechanically induced joint degeneration in diseases such as osteoarthritis. Mechanistically, we hypothesize this may occur through promoting Ca2+ influx and activation of the NFATc1 signaling pathway.