Correct alignment is important for success in total knee replacement. Currently this is achieved by a combination of intramedullary and extramedullary alignment using jigs and cutting blocks. This multicentre study evaluates the use of computer assisted planning and the interactive guidance of instruments for total knee replacement. Prior to surgery computer scans of the hip, knee and ankle were performed of patients enrolled in the study. Pre operative planning of the position and size of the knee components was performed by the surgeon using a CT based Vector Vision Navigation System (Brain LAB AG, Heimstetten, Germany). P.F.C.x (De Puy Leeds UK) knee replacements were then implanted in 38 patients. Surgery was carried out according to the standard surgical technique using traditional instruments. Information of the planned and intraoperatively recorded position of the cutting blocks were analysed to check varus/valgus alignment, flexion/extension alignment, the amount of planned resection from both the femoral and tibial bones and the size of the components. Information from all the separate centres was sent to a central data processing base for analysis. Results were calculated comparing the differences between the planned and performed cuts for each of the different variables studied. Graphs demonstrate the differences in the alignment between that planned by the surgical navigation system and what was actually carried out by the instrumented cuts. Based on the data obtained from the multicentre study we have concluded that the planned position of the implants using the standard instruments was similar to that using the Vector Vision Navigation System. We believe that it is safe to proceed with surgical navigation total knee arthroplasty using the P.F.C.x total knee prosthesis with Image Guided Surgery and a further multicentre study is currently underway evaluating this.