Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims

Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing.

Methods

The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 112 - 112
1 May 2016
Koller U Waldstein W Schatz K Windhager R
Full Access

Background

Online video is increasingly becoming a key source for people to satisfy their information needs. YouTube is one of the post popular websites used for information exchange, with more than one billion unique visitors every month.

Questions/purposes

In an attempt to participate in personal health decisions related to hip arthritis, patients may access YouTube for further information. As YouTube is a non peer-reviewed platform and little is known about the quality of available videos. We therefore asked the following research questions: (1) What is the information quality of YouTube videos related to the diagnosis of hip arthritis and (2) what information for the treatment of hip arthritis can be found on YouTube?


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1634 - 1639
1 Dec 2015
Faschingbauer M Renner L Waldstein W Boettner F

We studied whether the presence of lateral osteophytes on plain radiographs was a predictor for the quality of cartilage in the lateral compartment of patients with varus osteoarthritic of the knee (Kellgren and Lawrence grade 2 to 3).

The baseline MRIs of 344 patients from the Osteoarthritis Initiative (OAI) who had varus osteoarthritis (OA) of the knee on hip-knee-ankle radiographs were reviewed. Patients were categorised using the Osteoarthritis Research Society International (OARSI) osteophyte grading system into 174 patients with grade 0 (no osteophytes), 128 grade 1 (mild osteophytes), 28 grade 2 (moderate osteophytes) and 14 grade 3 (severe osteophytes) in the lateral compartment (tibia). All patients had Kellgren and Lawrence grade 2 or 3 arthritis of the medial compartment. The thickness and volume of the lateral cartilage and the percentage of full-thickness cartilage defects in the lateral compartment was analysed.

There was no difference in the cartilage thickness or cartilage volume between knees with osteophyte grades 0 to 3. The percentage of full-thickness cartilage defects on the tibial side increased from < 2% for grade 0 and 1 to 10% for grade 3.

The lateral compartment cartilage volume and thickness is not influenced by the presence of lateral compartment osteophytes in patients with varus OA of the knee. Large lateral compartment osteophytes (grade 3) increase the likelihood of full-thickness cartilage defects in the lateral compartment.

Cite this article: Bone Joint J 2015;97-B:1634–9.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 47 - 47
1 Aug 2012
Merle C Waldstein W Pegg E Streit M Gotterbarm T Aldinger P Murray D Gill H
Full Access

In pre-operative planning for total hip arthroplasty (THA), femoral offset (FO) is frequently underestimated on AP pelvis radiographs as a result of inaccurate patient positioning, imprecise magnification, and radiographic beam divergence. The aim of the present study was to evaluate the reliability and accuracy of predicting three-dimensional (3-D) FO as measured on computed tomography (CT) from measurements performed on standardised AP pelvis radiographs.

In a retrospective cohort study, pre-operative AP pelvis radiographs and corresponding CT scans of a consecutive series of 345 patients (345 hips, 146 males, 199 females, mean age 60 (range: 40-79) years, mean body-mass-index 27 (range: 29-57) kg/m2) with primary end-stage hip osteoarthritis were reviewed. Patients were positioned according to a standardised protocol and all images were calibrated. Using validated custom programmes, FO was measured on corresponding AP pelvis radiographs and CT scans. Inter- and intra-observer reliability of the measurement methods were evaluated using intra-class correlation coefficients (ICC). To predict 3-D FO from AP pelvis measurements, the entire cohort was randomly split in two groups and gender specific linear regression equations were derived from a subgroup of 250 patients (group A). The accuracy of the derived prediction equations was subsequently assessed in a second subgroup of 100 patients (group B).

In the entire cohort, mean FO was 39.2mm (95%CI: 38.5-40.0mm) on AP pelvis radiographs and 44.6mm (95%CI: 44.0-45.2mm) on CT scans. FO was underestimated by 14% on AP pelvis radiographs compared to CT (5.4mm, 95%CI: 4.8-6.0mm, p<0.001) and both parameters demonstrated a linear correlation (r=0.642, p<0.001). In group B, we observed no significant difference between gender specific predicted FO (males: 48.0mm, 95%CI: 47.1-48.8mm; females: 42.0mm, 95%CI: 41.1-42.8mm) and FO as measured on CT (males: 47.7mm, 95%CI: 46.1-49.4mm, p=0.689; females: 41.6mm, 95%CI: 40.3-43.0mm, p=0.607).

The results of the present study suggest that femoral offset can be accurately and reliably predicted from AP pelvis radiographs in patients with primary end-stage hip osteoarthritis. Our findings support the surgeon in pre-operative templating and may improve offset and limb length restoration in THA without the routine performance of CT.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 78 - 78
1 Aug 2012
Merle C Waldstein W Gregory J Goodyear S Aspden R Aldinger P Murray D Gill H
Full Access

In uncemented total hip arthroplasty (THA), the optimal femoral component should allow both maximum cortical contact with proximal load transfer and accurate restoration of individual joint biomechanics. This is often compromised due to a high variability in proximal femoral anatomy. The aim of this on-going study is to assess the variation in proximal femoral canal shape and its association with geometric and anthropometric parameters in primary hip OA.

In a retrospective cohort study, AP-pelvis radiographs of 98 consecutive patients (42 males, 56 females, mean age 61 (range:45-74) years, BMI 27.4 (range:20.3-44.6) kg/m2) who underwent THA for primary hip OA were reviewed. All radiographs were calibrated and femoral offset (FO) and neck-shaft-angle (NSA) were measured using a validated custom programme. Point-based active shape modelling (ASM) was performed to assess the shape of the inner cortex of the proximal femoral meta- and diaphysis. Independent shape modes were identified using principal component analysis (PCA). Hierarchical cluster analysis of the shape modes was performed to identify natural groupings of patients. Differences in geometric measures of the proximal femur (FO, NSA) and demographic parameters (age, height, weight, BMI) between the clusters were evaluated using Kruskal-Wallis one-way-ANOVA or Chi-square tests, as appropriate.

In the entire cohort, mean FO was 39.0 mm, mean NSA was 131 degrees. PCA identified 10 independent shape modes accounting for over 90% of variation in proximal femoral canal shape within the dataset. Cluster Analysis revealed 6 shape clusters for which all 10 shape modes demonstrated a significantly different distribution (p-range:0.000-0.015). We observed significant differences in age (p=0.032), FO (p<0.001) and NSA (p<0.001) between the clusters. No significant differences with regard to gender or BMI were seen.

Our preliminary analysis has identified 6 different patterns of proximal femoral canal shape which are associated with significant differences in femoral offset, neck-shaft-angle and age at time of surgery. We are currently evaluating the entire dataset of 345 patients which will allow a comprehensive classification of variation in proximal femoral shape and joint geometry. The present data may optimise preoperative planning and improve future implant design in THA.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 477 - 482
1 Apr 2012
Merle C Waldstein W Pegg E Streit MR Gotterbarm T Aldinger PR Murray DW Gill HS

The aim of this retrospective cohort study was to identify any difference in femoral offset as measured on pre-operative anteroposterior (AP) radiographs of the pelvis, AP radiographs of the hip and corresponding CT scans in a consecutive series of 100 patients with primary end-stage osteoarthritis of the hip (43 men and 57 women with a mean age of 61 years (45 to 74) and a mean body mass index of 28 kg/m2 (20 to 45)).

Patients were positioned according to a standardised protocol to achieve reproducible projection and all images were calibrated. Inter- and intra-observer reliability was evaluated and agreement between methods was assessed using Bland-Altman plots.

In the entire cohort, the mean femoral offset was 39.0 mm (95% confidence interval (CI) 37.4 to 40.6) on radiographs of the pelvis, 44.0 mm (95% CI 42.4 to 45.6) on radiographs of the hip and 44.7 mm (95% CI 43.5 to 45.9) on CT scans. AP radiographs of the pelvis underestimated femoral offset by 13% when compared with CT (p < 0.001). No difference in mean femoral offset was seen between AP radiographs of the hip and CT (p = 0.191).

Our results suggest that femoral offset is significantly underestimated on AP radiographs of the pelvis but can be reliably and accurately assessed on AP radiographs of the hip in patients with primary end-stage hip osteoarthritis.

We, therefore, recommend that additional AP radiographs of the hip are obtained routinely for the pre-operative assessment of femoral offset when templating before total hip replacement.