Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 50 - 50
22 Nov 2024
Hvistendahl MA Bue M Hanberg P Tøstesen S Vittrup S Stilling M Høy K
Full Access

Aim

Antibiotic prophylaxis is central in preventing postoperative spine infections, yet knowledge of clinical spine tissue antibiotic concentrations remains limited. Pooled postoperative spine infection rates are constant (approximately 3%), resulting in severe patient morbidity, mortality, and prolonged hospitalization. Current antibiotic dosing regimens often involve fixed doses based on empirical knowledge, surrogate measures (plasma samples), non-clinical evidence (experimental models), and inferior methodology (tissue specimens). Therefore, personalized antibiotic dosing may be the future of antibiotic prophylaxis to prevent postoperative infections, especially implant infections. The aim was to continuously evaluate intra- and postoperative cefuroxime target spine tissue concentrations in long-lasting spine surgery after personalized dosing by repeated weight-dosed intravenous administrations.

Method

Twenty patients (15 female, 5 male) scheduled for long-lasting spine deformity surgery with hypotensive anaesthesia were included; median age (range): 17.5 years (12-74), mean BMI (range): 22.2 (16.2-37.7), and mean surgery time (range): 4h 49min (3h 57min-6h 9min). Weight-dosed cefuroxime (20 mg/kg) was administered intravenously to all patients on average 25 min before incision and repeated after 4 hours. Microdialysis catheters were placed for sampling of cefuroxime concentrations in vertebral bone (only intraoperative sampling), paravertebral muscle, and subcutaneous tissue as soon as possible after surgery start. Upon wound closure, two additional catheters were placed in the profound and superficial part of the wound. Microdialysis and plasma samples were obtained continuously intra- and postoperative for up to 12 hours. The primary endpoint was (based on cefuroxime time-dependent efficacy) the time with cefuroxime concentrations above the clinical breakpoint minimal inhibitory concentration for Staphylococcus aureus of 4 µg/mL in percentage (%fT>MIC4) of

patients’ individual surgery time,

first dosing interval (0-4 hours),

second dosing interval (4-12 hours).


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 27 - 27
1 Oct 2022
Vittrup S Jensen LK Hanberg P Slater J Hvistendahl MA Stilling M Jørgensen N Bue M
Full Access

Aim

This study investigated if co-administration of rifampicin with moxifloxacin led to a decrease in moxifloxacin concentrations in relevant tissues in a porcine model of implant-associated osteomyelitis caused S. aureus. Pharmacokinetics were measured using microdialysis and treatment effect was measured by quantifying bacterial load from implant and periprosthetic bone following a 1-stage revision and antibiotics.

Method

15 female pigs received a stainless-steel implant in the right proximal tibia and were randomized into two groups. Infection was introduced by inoculating the implant with Staphylococcus aureus as previously described1. On day 7 post surgery, all pigs were revised with implant removal, debridement of implant cavity and insertion of a sterile implant. 7 days of treatment was then initiated with either moxifloxacin 400 mg iv q.d. (M) or moxifloxacin and rifampicin 450 mg iv b.i.d. (RM). At day 14, animals were sedated and microdialysis was applied for continuous sampling of moxifloxacin concentrations during 8 h in five compartments: the implant cavity, cancellous bone in both the infected and non-infected proximal tibia, and adjacent subcutaneous tissue on both the infected and non-infected side using a previously described setup2. Venous blood samples were collected. Implant and adjacent bone were removed for analysis.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 17 - 17
1 Oct 2022
Vittrup S Hanberg P Knudsen MB Tøstesen S Kipp JO Hansen J Jørgensen NP Stilling M Bue M
Full Access

Aim

Prompt and sufficient broad spectrum empirical antibiotic treatment is key to prevent infection following open tibial fractures. Succeeding co-administration, we dynamically assessed the time for which vancomycin and meropenem concentrations were above relevant epidemiological cut-off minimal inhibitory concentrations (T>MIC) in tibial compartments for the bacteria most frequently encountered in open fractures. Low and high MIC-targets were applied: 1 and 4 µg/mL for vancomycin and 0.125 and 2 µg/mL for meropenem.

Materials and methods

8 pigs received a single dose of 1000 mg vancomycin and 1000 mg meropenem simultaneously over 100 min and 10 min, respectively. Microdialysis catheters were placed for sampling over 8 h in tibial cancellous bone, cortical bone, and adjacent subcutaneous adipose tissue. Venous blood samples were collected as references.