The treatment of osteochondral lesions is of
great interest to orthopaedic surgeons because most lesions do not heal
spontaneously. We present the short-term clinical outcome and MRI
findings of a cell-free scaffold used for the treatment of these
lesions in the knee. A total of 38 patients were prospectively evaluated
clinically for two years following treatment with an osteochondral
nanostructured biomimetic scaffold. There were 23 men and 15 women; the
mean age of the patients was 30.5 years (15 to 64). Clinical outcome
was assessed using the Knee Injury and Osteoarthritis Outcome Score
(KOOS), the Tegner activity scale and a Visual Analgue scale for
pain. MRI data were analysed based on the Magnetic Resonance Observation
of Cartilage Repair Tissue (MOCART) scoring system at three, 12
and 24 months post-operatively. There was a continuous significant
clinical improvement after surgery. In two patients, the scaffold
treatment failed (5.3%) There was a statistically significant improvement
in the MOCART precentage scores. The repair tissue filled most of
the defect sufficiently. We found subchondral laminar changes in all
patients. Intralesional osteophytes were found in two patients (5.3%).
We conclude that this one-step scaffold-based technique can be used
for osteochondral repair. The surgical technique is straightforward,
and the clinical results are promising. The MRI aspects of the repair
tissue continue to evolve during the first two years after surgery.
However, the subchondral laminar and bone changes are a concern. Cite this article:
to evaluate the radial displacement of meniscal allograft transplants (MATs) in patients operated with an open technique vs. an arthroscopic technique at 1 year postoperatively. Radial displacement or extrusion of the graft is frequently observed after meniscus transplantation. The hypothesis is that arthroscopically inserted MATs extrude less than open MATs and therefore have a more intra-articular position than open surgery transplants. 39 patients were included in the study: the first group of open surgery transplants consisted of 16 patients (10 lateral, 6 medial). The second group of arthroscopic transplants consisted of 21 patients (14 lateral, 7 medial). MR-images were taken one year post-surgery. The displacement, evaluated on 1,5T MR coronal images, was defined as the distance between the tibial plateau and the outer edge of the meniscus.Purpose
Materials and Methods
There is growing evidence in literature that meniscal allograft transplantation performed with the right indications results in significant pain relief and functional improvement of the involved joint. Long-term data on clinical and radiological outcome are however scarce. We evaluated 89 transplants (53 lateral and 36 medial) in 87 patients. Mean time of follow-up was 15,5 ± 2,85 years (range 9,9–20,4), mean age at surgery was 35,2 years (range 22–50). Clinically, the patients were evaluated using a KOOS, SF-36, HSS, VAS, Tegner and Lysholm score. HSS scores were compared to pre-operative and mid-term follow-up data. Each patient received radiographs (AP, profile and Rosenberg view). Radiological outcome parameters were joint space width narrowing and Fairbank changes and were scored according to IKDC. Failures were defined as patients who were converted to an arthroplasty.Background
Methods
The present study was designed to evaluate the implantation of alginate beads containing human mature allogenic chondrocytes for the treatment of symptomatic cartilage defects in the knee. A biodegradable, alginate-based biocompatible scaffold containing human mature allogenic chondrocytes was used for the treatment of chondral and osteochondral lesions in the knee. Twenty-one patients were clinically prospectively evaluated with use of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and a Visual Analogue Scale (VAS) for pain preoperatively and at 3, 6, 9, 12, 24 and 36 months of follow-up.Aim
Methods
to evaluate the kinematics of a knee with a polyurethane meniscal scaffold for partial meniscus defect substitution during flexion under weightbearing conditions in an upright MRI. In addition, radial displacement and the surface of the scaffold was compared to the normal meniscus. One cadaver with a normal lateral meniscus and medial scaffold in the left knee and with a normal medial meniscus and lateral scaffold in the right knee. The scaffolds were implanted to substitute a 3 cm meniscus defect in the posterior horn. The cadaver was scanned in an 0,7T open MRI with a range of motion from 0-30-60-90 to hyperflexion. Kinematics were evaluated on sagittal images by the following two parameters: the position of the femoral condyle, identified by the centre of its posterior circular surface, which is named the flexion facet centre (FFC), and the point of closest approximation between the femoral and tibial subchondral plates, the contact point (CP). Both were identified in relation to the posterior tibial cortex. The displacement, measured on coronal images, is defined as the distance between the tibial plateau and the outer edge of the meniscus. The surface was also measured on coronal slices and contains the triangular surface of the meniscus.Purpose
Materials and Methods
To assess the performance of an acellular synthetic scaffold in the treatment of painful partial meniscal tissue loss. Subjects recruited (n=52) had irreparable medial or lateral meniscus partial meniscus loss, intact rim, presence of both horns and a stable well aligned knee. Diagnostic imaging was used to assess tissue ingrowth at 3 months post-implantation by evidence of vascularisation in the scaffold using DCE-MRI with intravenous gadolinium contrast material (n=42). All DCE-MRI scans were assessed centrally for neovascularisation in the peripheral half of the scaffold meniscus and integration of the implanted device. Stability of tissue ingrowth and cartilage scores in the index compartment were assessed at 12 and 24 months post-implantation using anatomic MRI scans.Purposes of the study
Methods
Autologous chondrocyte implantation presents a viable alternative to microfracture in the repair of damaged articular cartilage of the knee; however, outcomes for patellar lesions have been less encouraging. ChondroCelect (CC) is an innovative, advanced cell therapy product consisting of autologous cartilage cells expanded To assess the effect of CC in the treatment of patellofemoral lesions, for which standard treatment options had failed and/or no other treatment options were considered feasible.Introduction
Purpose
Femoral fracture non-unions are considered to be rare, and are usually treated successfully with exchange nailing. However, recalcitrant aseptic cases often require additional bone grafting. The efficacy of BMP-7 in the treatment of recalcitrant aseptic femoral non-unions was studied. Since 2003 a multicenter registry (bmpusergroup.co.uk) was created collecting details of BMP7 application in general, between different university hospitals across Europe. Demographic data, intraoperative details, complications, clinical outcome parameters, radiological healing, VAS pain score, EuroQol-5D, and return-to-work were prospectively recorded. Radiological healing was defined as the presence of callous in two planes over 3 cortices. The minimum follow up was 12 months. Seventeen patients, who had undergone a median of 1(1 to 4) prior revision operations, over a median period from the injury of 17 months(9 to 42), were included in this observational study. In 76.4%(13/17) the BMP7 was combined with revision of the fixation. Non-union healing was verified in 14/17 cases(82.3%) in a median period of 6.5 months(3–15). Over 80% of these patients returned to their pre-injury level of activities, the median overall health state score was 82.5(35 to 100). No adverse events or complications were associated with the BMP7 application over the median follow-up of 24 months(12–68).
On behalf of the Actifit Study Group: R Verdonk, P Beaufils, J Bellemans, P Colombet, R Cugat, P Djian, H Laprell, P Neyret, H Paessler.
On behalf of the Actifit Study Group: R Verdonk, P Beaufils, J Bellemans, P Colombet, R Cugat, P Djian, H Laprell, P Neyret, H Paessler,
We report a long term experience on massive rotator cuff tears treated by the means of a nonresorbable transosseously fixed patch combined with a subacromial decompression From December 1996 until August 2002, a total of 41 patients were treated with a synthetic interposition graft and subacromial decompression. All patients had a preoperative ultrasound evidence of a primary massive full-thickness tear that was thought to be irreparable by simple suture. All patients were evaluated pre- and postoperatively using the Constant and Murley score, DASH questionnaire, Simple Shoulder Test, VAS scale for pain, ultrasound and plain radiographs. The patients consisted of 23 men and 18 women aged 51–80 years (mean 67 years). We had a lost of follow up of 6 patients. One patient had a total shoulder arthroplasty at 7.7 years and one patient had a redo with a new synthetic graft at 9.6 years. They were followed up for a mean of 7.2 years. Their mean preoperative Constant and Murley score improved from 25.7 preoperatively to 69.6. Similar improvements were seen with the DASH score (56.6 to 23.3), SST (1.2 to 7.9) and VAS scale (75.4 to 14.1) Anatomically, the repair resulted in mean acromio-humeral interval of 6.6 mm. Ultrasound showed a further degeneration of the rotator cuff with tears posteriorly from the interposition graft. In 67.7% of all patients the graft was continuous present. Histology – obtained from one patient scheduled for a reversed shoulder arthroplasty- showed partial ingrowth of peri-tendinous tissue. Despite ongoing degeneration of the cuff in nearly half our population, restoring a massive rotator cuff defect with a synthetic interposition graft and subacromial decompression can give significant and lasting pain relief with a significant improvement of ADL, range of motion and strength. Role of ultrasonography in shoulder pathology: Consistency with clinical and operative findings K. W. Chan, G. G. McLeod Department of Trauma and Orthopaedic Surgery, Perth Royal Infirmary, Perth PH1 1NX, United Kingdom. Shoulder disorders are common and main causes of shoulder pain with/without functional deficit include adhesive capsulitis (frozen shoulder), impingement syndrome and rotator cuff pathology. The sensitivity and specificity of ultrasonography have been reported as 80% and 100% respectively in the literature. We carried out a retrospective case note review of patients that underwent ultrasonography of shoulder, comparing the radiological findings with clinical diagnosis and operative findings. 58 patients, 36 male and 22 female attended the orthopaedic outpatient clinic with painful shoulder and underwent ultrasonography of shoulder during the period of study. Mean age of patients is 55 (range 28 to 78 years old). 33 patients had ultrasonography of right shoulder, 20 patients had ultrasonography of left shoulder while 5 patients had ultrasonography of both shoulders. 79% (50/63) of the ultrasonography findings were consistent with clinical diagnosis. 17 patients had normal findings on ultrasonography and were discharged fully. 25 patients with clinical and radiological diagnosis of biceps tendon tear, calcifying tendinosis and partial/full thickness rotator cuff tear were treated conservatively. 19% (4/21) of patients with diagnosis of calcifying tendinosis had decompression surgery. 38% (8/21) of patients with diagnosis of partial/full thickness rotator cuff tear had decompression surgery + rotator cuff repair. The degree of rotator cuff tear in operative findings for 6 out of 8 patients (75%) that underwent decompression surgery +/− rotator cuff repair were consistent with ultrasonography findings. 4 patients had inconclusive ultrasonography findings and had magnetic resonance imaging to further confirm the pathology. We conclude that ultrasonography should be used as the first line of investigation in aiding the clinical diagnosis and management of shoulder disorders as it is non-invasive and cost effective. The sensitivity of ultrasonography in detecting shoulder pathology is 75% from this study.
The concept of non-anatomic reversed arthroplasty is becoming increasingly popular. The design medializes and stabilizes the center of rotation, and lowers the humerus relative to the acromion, and lengthens the deltoid muscle up to 18%. Such a surgically created global distraction of muscles is likely to affect nervous structures. When nerves are stretched up to 5–10%, axonal transport and nerve conduction starts to be impaired. At 8% of elongation, venous blood flow starts to diminish and at 15% all circulation in and out of the nerve is obstructed. [ In a formalin-embalmed female cadaver specimen, the brachial plexus en peripheral upper limb nerves were carefully dissected and injected with an iodine containing contrast medium. At the same time 1.2 mm-diameter leaded markers were implanted at topographically crucial via points for later enhanced recognition on CT reconstructions. After the first session of CT scanning a plastic replica of the Delta reversed shoulder prosthesis® was surgically placed followed by re-injection of the plexus with the same solution. The preoperative and the postoperative specimen were studied using a helical CT scan with a 0,5 mm slice increment. The Mimics® (Materialise NV, Belgium) software package was used for visualization and segmentation of CT images and 3D rendering of the brachial plexus and peripheral nerves. After surgery, there was an average increase in nerve strain below physiologically relevant amplitudes. In a few local segments of the brachial plexus an increase in nerve strain exceeding 5–10 % was calculated. The largest increase in strain (up to 19%) was observed in a segment of the medial cord. These results suggest there might be a clinically relevant increase in nerve strain following reversed shoulder arthroplasty.
Physiological studies have revealed that the central nervous system controls groups of muscle fibers in a very efficient manner. Within a single skeletal muscle, the central nervous system independently controls individual muscle segments to produce a particular motor outcome. Mechanomyographic studies on the deltoid muscle have revealed that the deltoid muscle, commonly described as having three anatomical segments, is composed of at least seven functional muscle segments, which all have the potential to be at an important level independently coordinated by the central nervous system.[ Forty-four deltoids of 22 embalmed adult cadavers, were analyzed. The axillary nerve was carefully dissected together with his anterior and posterior branch upon invasion into the muscle. According to the pattern of fiber distribution and their fascial embalmment, we then carefully splitted the deltoid muscle into different portions each being innervated by a major branch of the axillary nerve. The position and volume of each segment in relation to the whole muscle was derived. In 3 cases the axillary nerve branched out in 8 major divisions. In 22 out of 44 cases (50%), the axillary nerve branched out in 7 principal parts. A branching out pattern of 6 major divisions occurred in 14 out of 44 cases. Finally we found a division in 5 major branches in 5 of the specimens. In general, both posterior and anterior peripheral segments seemed to have the largest volume. In nearly all (93%) cases, the central segments were smaller in weight and volume compared to the more peripheral segments. Based on the innervation pattern of the deltoid muscle a segmentation in 5 up to 8 major segments seem to be found. This confirms from anatomical point of view earlier reports of functional differentiation within the deltoid muscle.