Dual Mobility (DM) Total Hip Replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. The in-vivo mechanics of these implants is not well understood, despite their increased use in both elective and trauma settings. Therefore, the aim of this study was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment techniques. Retrieved DM liners (n=20) were visually inspected for the presence of seven established modes of polyethylene damage. If embedded debris was identified on the external surface, its material composition was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation using a validated methodology. Visual inspection of the liners revealed that scratching and pitting were the most common damage modes on either surface. Burnishing was observed on 50% and 15% of the internal and external surfaces, respectively. In addition, embedded debris was identified on 25% of the internal and 65% of the external surfaces. EDX analysis of the debris identified several materials including iron, titanium, cobalt-chrome, and tantalum. Geometric analysis demonstrated highly variable damage patterns across the liners. The results of this study provide insight into the in-vivo mechanics of DM bearings. For example, the results suggest that the internal bearing (i.e., between the head and liner) acts as the primary articulation site for DM-THRs as evidenced by a higher incidence of burnishing and larger, more concentrated regions of penetration across the liners’ internal surfaces. Furthermore, circumferential, and crescent-shaped damage patterns were identified on the articulating surfaces of the liners thus providing evidence that these components can rotate within the acetabular shell with varying degrees of mobility. The mechanics of DM bearings are complex and may be influenced by several factors (e.g., soft tissue fibrosis, patient activities) and thus further investigation is warranted. Finally, the results of this study suggest that DM liners may be susceptible to ex-vivo surface damage and thus caution is advised when handling and/or assessing these types of components.
This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.Aims
Methods
Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance. An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate.Aims
Methods
Advances in polyethylene (PE) in total hip arthroplasty
have led to interest and increased use of highly crosslinked PE
(HXLPE) in total knee arthroplasty (TKA). Biomechanical data suggest
improved wear characteristics for HXLPE inserts over conventional
PE in TKA. Short-term results from registry data and few clinical
trials are promising. Our aim is to present a review of the history
of HXLPEs, the use of HXLPE inserts in TKA, concerns regarding potential mechanical
complications, and a thorough review of the available biomechanical
and clinical data. Cite this article:
Retrieval studies of total hip replacements with highly cross-linked ultra-high-molecular-weight polyethylene liners have shown much less surface damage than with conventional ultra-high-molecular-weight polyethylene liners. A recent revision hip replacement for recurrent dislocation undertaken after only five months revealed a highly cross-linked polyethylene liner with a large area of visible delamination. In order to determine the cause of this unusual surface damage, we analysed the bearing surfaces of the cobalt-chromium femoral head and the acetabular liner with scanning electron microscopy, energy dispersive x-ray spectroscopy and optical profilometry. We concluded that the cobalt-chromium modular femoral head had scraped against the titanium acetabular shell during the course of the dislocations and had not only roughened the surface of the femoral head but also transferred deposits of titanium onto it. The largest deposits were 1.6 μm to 4.3 μm proud of the surrounding surface and could lead to increased stresses in the acetabular liner and therefore cause accelerated wear and damage. This case illustrates that dislocations can leave titanium deposits on cobalt-chromium femoral heads and that highly cross-linked ultra-high-molecular-weight polyethylene remains susceptible to surface damage.