Wear particles are considered to be the major culprit for the aseptic loosening. Their characterization is thus crucial for the understanding of their bioreactivity and contribution to the development of aseptic loosening. Metal wear debris particles were analyzed directly in periprosthetic tissue resins by scanning electron microscopy (SEM) combined with back-scattered electron imaging (BSE) and energy dispersive X-ray spectroscopy (EDS). Four groups of tissue samples retrieved at revision operations of loosened hip implants with different bearing surfaces (metal-on-metal, ceramic-on-polyethylene and metal-on-polyethylene), and different material of the femoral stem (Ti alloy, CoCrMo and polymer combined with stainless steel) were investigated. Tissue samples were first analyzed histologicaly. Sections from the same paraffin blocks were then carbon coated and analyzed using SEM/BSE/EDS method.Background
Methods
Alternative bearings – metal-on-metal and ceramic-on-ceramic bearings have been introduced in the last decade with the aim to diminish wear and, subsequently, aseptic loosening and osteolysis. These bearings were aimed for younger, more active patients. Clinical results which would compare the performance of various alternative and traditional bearings are scarce. Between January 2000 and December 2002, we performed 487 total hip replacements in 474 patients using three types of bearings: metal-on-metal (MOM), metal-on-polyethylene (MOP), and ceramic-on-ceramic (COC). All patients received the same type of acetabular cup (Bicon-Plus, Plus Orthopedics) and same type of femoral component (SL-Plus, Plus Orthopedics). We used the hospital computer database for the evaluation of patient data and data on revision operations.Introduction
Methods