Several preoperative planning tools in computer-assisted surgery in acetabular fractures have been proposed. Moreover, all these preoperative planning tools are based on geometrical repositioning with their own limitations. The aim of this study was to evaluate the value of our prototype virtual planning tool using a rigid biomechanical model to predict failure in fracture reduction. Between November of 2015 and June of 2016, 10 patients were operated by the main author for acetabular fracture in our institution. To validate our biomechanical model planning tool, biomechanical simulation was performed for each patient immediately after the surgery. Reduction quality was assessed on post-operative CT scans. A 3D model of the acetabular fracture was build out of the CT images using the non-commercial software Itksnap. Then a biomechanical model implemented within the non-commercial Artisynth framework was used to perform virtual reduction. Surgical approach and surgical strategy according to the operative report were simulated. The simulated reductions and the surgical reductions were compared. The same reductions were obtained during surgery and biomechanical simulation in the 10 cases. For 7 cases, reduction was achieved by anterior surgical approach and so was the simulation. For 3 cases, reduction was achieved by posterior surgical approach and so was the simulation. The biomechanical simulation found similar results using the same surgical strategy with 9 anatomical reductions (90%) and one imperfect reduction (10%). The mean duration to perform acetabular planning surgery was 24 +/− 9 min [16–38]. Our virtual planning tool using a rigid biomechanical model can predict success or failure in fracture reduction according to the surgical approach and the surgical strategy.
We report a single-centre, prospective, randomised study for pedicle screw insertion, by using a Computer Assisted Surgery (CAS) technique with three dimension (3D) intra-operative images intensifier versus conventional surgical procedure. 143 patients (68 women and 75 men) were included in this study. 72 patients underwent conventional surgery (C = conventional). 71 patients were operated on with the help of a 3D intra-operative imaging system (N = navigated). We performed 34 percutaneous surgeries in group N and 37 in group C; 25 open surgeries in group N and 35 in group C. 382 screws were implanted in group C and 174 in group N. We measured the pedicle screw running-time, and surgeon's radiation exposure. All pedicle runs were assessed according to Heary's classification by two independent radiologists on a post-operative CT.Introduction
Methods
In recent years internal fixation of the spine by using posterior approach with minimally invasive and percutaneous technique were increasingly used in trauma. The percutaneous surgery lose information and navigation is supposed to provide better data because the lost information is found again. We hypothesise that a percutaneous minimal invasive dorsal procedure by using 3D intra-operative imaging for vertebral fractures allows short operating times with correct screw positioning and does not increase radiation exposure. 59 patients were included in this prospective, monocentric and randomised study. 29 patients (108 implants) were operated on by using conventional surgical procedure (CP) and 30 patients (72 implants) were operated on by using a 3D fluoroscopy-based navigation system (3D fluo). In the two groups, a percutaneous approach was performed for transpedicular vertebroplasty or percutaneous pedicle screws insertion. In the two groups surgery was done from T4 level to L5 levels. Patients (54 years old on average) suffered trauma fractures, fragility fractures or degenerative instabilities. Evaluation of screw placement was done by using post-operative CT with two independent radiologists that used Youkilis criteria. Operative and radiation running time were also evaluated. With percutaneous surgery, the 3D fluo technique was less accurate with 13.88% of misplaced pedicle screws (10/72) compared with 11.11% (12/108) observed with CP. The radiation running time for each vertebra level (two screws) reached on average 0.56 mSv with 3D fluo group compared to 1.57 mSv with the CP group. The time required for instrumentation (one vertebra, two screws) with 3D fluo was 19.75 minutes compared with CP group 9.19 minutes. The results were statistically significant in terms of radiation dose and operative running time (p < 0.05), but not in terms of accuracy (p= 0.24). With percutaneous procedures, 3D fluoroscopy-based navigation (3D fluo) system has no superiority in terms of operative running time and to a lesser degree in terms of accuracy, as compared to 2D conventional procedure (CP), but the benefit in terms of radiation dose is important. Other advantages of the 3D fluo system are twofold: up-to-date image data of patient anatomy and immediate availability to assess the anatomical position of the implanted screws.
Metal-on-metal hip arthroplasty is nowadays a well spread technique for hip replacement. It is a technically demanding procedure with sine qua non steps. Most of the large Australian, British and north-American clinical outcomes found about 20% early failure, within 3 months, during the steep part of the learning curve. In a biomechanical study on cadaver we showed that valgus and version placements should be appropriate in order to get the most effective strength in compression. But valgus placement is drastically limited by lateral neck notching which leads to early fracture. Anteversion also should be manage to address the cam-type shape of the ventro-lateral femoral neck, since most of the young patient with hip arthritis present retroverted misalignment of the head along the neck axis. The size of the femoral head is another issue because big head component needs a big acetabular cup. Sparing large amount of bone on the femoral side might lead to bone lost on the pelvic side. In order to enhance the placement of the femoral component – smallest one, in valgus, without retroversion and without neck notching – manufacturers propose mechanical device based on neck intraoperative palpation. Digitalized versions of this principle are also available. These systems still demand experienced surgeon to make slight adjustment on entry point and trajectory of the guide-wire. Imageless computer navigation based on proximal femur palpation and atlas is interesting on almost normal bone but could be inaccurate on altered bone, especially cam-type shape. Navigation based on CT scan gives exact 3D information and accurate planning but is still time consuming. Navigation on 2D fluoroscopic view shows good clinical results with only about 20 minutes more than a standard procedure. We proposed a bone morphing® procedure with emphasis of surface palpation on head-neck junction to get accurately the personal shape of each femur. Preliminary results on pathological bones showed safe reaming of the head without notching.
Following orthopaedic reconstruction and cranial neurosurgery, spine surgery is now entering its low invasive period. When, in 90’s, computer went routinely available in the surgical field, the main goal was to help surgeons operate on with more accuracy some difficult but standard procedures. The surgery was “computer aided”. The displayed tools on 2D or 3D images allowed surgeons to avoid permanent intra operative landmarks. Once patient personal anatomy was capture into the machine and the tools calibrated, the surgeon was able to plan and optimised ideal trajectories without direct vision to check tools position. “Navigation” starts to be more obvious to describe this intra operative control. Anyway, we still needed large exposure to get the full bone surface in order to build a 3D surface based model. This model optically localised was matched using rigid or elastic algorithm with preoperative CT scan model or bone morphing®. Ultrasound recognition of the soft tissue/bone interface let think about trans cutaneous palpation. However, automatic segmentation of the bone surface never lead to commercially available soft. Only X-ray is commonly use during surgery to help surgeon to see tools and bone without surgical exposure. Fluoroscopy allows percutaneous trajectory as iliosacral screwing, vertebroplasty, fracture nailing et caetera. Radiation exposition could therefore be an issue for patient but also for surgeon. Fluoronavigation is a good response to percutaneous surgery. In spine no transversal view could be available. Surgeons should make mental reconstruction of the volume to perform the right trajectory. Industrial proposed intra operative tomography on C-arm with 3D reconstruction. It works well for limbs, but in thoracic and lumbar spine the large amount of surrounding soft tissues leads to low quality images. Flat panel X-ray receptor are a path to get more accurate images. Other perspectives are circular intra CT scan. The cost and the volume of machines stops the spread of such device. Robots are used by knee surgeons but abandoned by hip surgeons. In spine tool holder robot are available in order to place a pedicular drill guide. Matching with bone is based on fluoroscopy. Spine navigation could be useful to e-leaning and simulators too. The training of percutaneous surgery is long, because of mental matching between fluoroscopic 2D projections and the vertebra volume. We need a simulator allowing 3D virtual trajectory checked on AP and lateral view to short the learning curve.
Computed tomography demonstrated 15 extraosseous screws lying anteriorly to the sacral ala or in the sacral canal. These extraosseous screws were associated with neurological deficits in nine cases without a preoperative diagnosis. In six cases, the extra-ossesous screw was not associated with any postoperative deficit. In five cases, neurological lesions diagnosed after the operation were not associated with an extra-osseous screw. Twenty-six neurological lesions were reviewed at a mean follow-up of 25 months: improvement was observed in 19, no change in five and aggravation in two.