Although total hip arthroplasty (THA) has been one of the most successful, reliable and common prosthetic techniques since the introduction of cemented low-friction arthroplasty by Charnley in the early 1960s, aseptic loosening due to stem-cement and cement-bone interface failures as well as cement fractures have been known to occur. To overcome this loosening, the stem should be mechanically retentive and stable for long term repetitive loading. Migration studies have shown that all stems migrate within their cement mantle, sometimes leading to the stem being debonded from the cement [1]. If we adopt the hypothesis that the stems debond from the cement mantle, the stem surface should be polished. For the polished stem, the concept of a double taper design, which is tapered in the anteroposterior (AP) and mediolateral (ML) planes, and a triple-tapered design, which has trapezoidal cross-section with the double tapered, have been popularized. Both concepts performed equally well clinically [2]. In this study, we aimed to analyze stress patterns for both models in detail using the finite element (FE) method. An ideal cemented stem with bone was made using three dimensional FE analyses (ANSYS 13). The cortical bone was 105 mm long and 7 mm thick and the PMMA cement mantle was 5 mm in thickness surrounding the stem. Young's modulus was set at 200 GPa for the bone and 2.2 GPa for the cement. Poisson's ratio was 0.3 for both materials. The bone-cement interface was completely bonded and cement-stem interface was not bonded in cases where a polished stem surface was used. The two types of stems were compared. One being the double tapered (Fig 1 left) and the other the triple tapered (Fig 1 right). The coefficient of friction (μ) at the stem-cement interface was set at 0 for both models. The distal ends of the stems were not capsulated by the PMMA and therefore the stems were free to subside. All materials were assumed to be linearly isotropic and homogeneous. The distal ends of the bone were completely constrained against any movements and rotations. An axial load of 1200 N and a transverse load of 600 N were applied at the same time simulating the bending condition [3].Introduction
Methods
Dislocation continues to be a common complication of total hip arthroplasty (THA) [1]. Although many factors affect the prevalence of dislocation, achieving proper intraoperative soft tissue tension is one of the main surgical goals to reduce this risk. However, a sensor to measure the soft tissue of ball joints i.e. hip and shoulder has not yet been developed. The sensor enables surgeons to adjust the size or position of the implants depending on soft tissue tension. Hence, we have developed a sensor-instrumented modular femoral head for THA to measure soft-tissue tension intraoperatively [2]. This study demonstrates the possibility of a soft tissue tension and joint angle data connection using a wireless system. The sensor-instrumented modular femoral head that we developed was made of epoxy resin with linear strain gauges (BTM-1C, Tokyo Sokki, Japan) inside the head and a triple-axis gyroscope (MPU-6500). Strain outputs and angle data from the gyroscope were transferred to a computer via a 2.4 GHz wireless link (RN42, Bluetooth Module). Data logging was performed by a custom program using C++ (Microsoft Visual Studio 2012) via both wired and wireless link. The strain gauges were embedded inside the head. For the calibration study, the sensor was fixed in a clamping block of an angle vice to permit changes in the direction of force. The calibration jig with the angle vice was placed on top of a low-friction two-dimensional translation table that eliminated horizontal constraints. A constant vertical force was applied using a vertical die set. The experimental setup is shown in Fig. 1. Instead of a portable battery, a DC electric power supply is used (bottom left). A picture of the Gyroscope and the radio module is inserted (bottom right). The force values and applied angles were changed recording strain gauge and angle outputs.Introduction
Materials and Methods
Dislocation continues to be a common complication of total hip arthroplasty (THA). Many factors affect the prevalence of dislocation after THA, including soft tissue laxity, surgical approach, component position, patient factors, and component design [1]. Achieving proper intraoperative soft tissue tension is one of the surgical goals to reduce the risk of the dislocation. However, reports of the intraoperative soft tissue tension measurements have not been enough yet. One way to quantify the intraoperative soft tissue tension is to measure joint forces using an instrumented prosthesis. Hence, we have developed a sensor-instrumented modular femoral head of THA to measure the soft-tissue tension intraoperatively. The goal of this study was to design and calibrate the sensor. The sensor-instrumented modular femoral head that we developed was made of polycarbonate with four linear strain gauges (BTM-1C, Tokyo Sokki Kenkyujo Co., Ltd., JP). To fabricate the sensor, four penetrant holes (1.6 millimeter in diameter), parallel to the coordinate axes were produced (Fig1). The strain gauges were embedded on inside wall of these holes. Finally, the holes were filled by epoxy resin (A-2 adhesive, Tokyo Sokki Kenkyujo Co., Ltd., JP). For calibration study, the sensor was fixed in a clamping block of an angle vice to permit change of force directions. The calibration jig with the angle vice was placed on top of a low-friction x-y translation table that eliminated horizontal constrains. Known forces (Fi) were applied by a standard material testing machine (Instron4204, INSTRON, Norwood, MA) through a polyethylene insert (Fig. 2). Two different series of forces were applied. One is that force values were increased from zero to 600 N on the z axis. And the other force pattern is 600 N forces were applied by changing force angles. The external force vector (Fi) can be expressed in terms of the strain gauge outputs as follows: Fi = T Si where T is a calibration matrix and Si corresponds to the outputs of the strain gauges. Calibration errors were calculated according to well-established methods [2].Introduction
Materials and Methods
Modular femoral stems of Total Hip Arthroplasty (THA) have been designed to fit the metaphysis and diaphysis separately. Clinical results with modular femoral stems are reported to be satisfactory, but there exists several concerns with modular implant connections, including fretting corrosion, fracture of implant, and dissociation the stem from the proximal sleeve. Recently, we have become aware of another potential consequence of the modular design: sleeve deformation secondary to forces encountered during insertion. In our patients, we noted that the stems would not fully seat in the machined taper of the sleeve, indicating that some type deformation to the sleeve had occurred. We began an in vivo study to characterize this phenomenon. The objectives of this study were (1) Does deformation occur by impacting the sleeve into the metaphysis? (2) If so, quantify the sleeve deformation in hip arthroplasty patients. One man and 7 women undergoing primary THA were enrolled. This project was approved by IRB. This modular system (4-U CLS; Nakashima Medical Co., Japan) consists of a metaphyseal sleeve that connects with the diaphyseal stem via a Morse taper. The sleeve was impacted into the metaphysis first, followed by the stem. A custom taper gauge for each size of sleeve (Figure 1A) was inserted into the sleeve before and after impacting the sleeve into the metaphysis, and the distance between the top of the sleeve and the top of the gauge was measured using a caliper (* in Figure 1B). Deformation was defined as the difference in distance between the before and the after impacted dimensions. Preoperative femoral morphology, assessed using Dorr classification system, was type A in 2 hips, type B in 5 hips, and type C in 1 hip.INTRODUCTION:
MATERIALS AND METHODS:
It is said that the mechanical stress is a main factor to advance degenerative osteoarthritis. Therefore, to keep the joint stability is very important to minimize mechanical stress. Methods to evaluate bone-related factor are almost established, especially in hip dysplasia. On the other hand, it is unclear how much each soft tissue contribute to the joint stability. In this study we evaluated the soft tissue contribution for hip joint stability by distraction testing using MTS machine. We used seven fresh frozen hips from four donors, whose race was all western and reason of death was not related to hip disease in all cases. Average age of them at death was 83 years old. Mean average weight and height were each 52 kg and 162 cm. We retrieved hemi pelvis and proximal femur which kept hip joint intact. We removed all other soft tissue except iliofemoral ligament, pubofemoral ligament, ischiofemoral ligament and capsule. The hemi-pelvis mounted on angular-changeable fixator and the femur fixed to MTS machine (Figure 1). XY sliding table was used to minimize the horizontal direction stress during distraction. MTS machine was set to pull the femur parallel to its shaft by 0.4 mm/sec velocity against pelvis after 10N compression and to keep 5 mm distance for 5 seconds. We measured the force at 1 mm, 3 mm, 5 mm distraction. In case the joint was dislocated, the maximum force just before dislocation was recorded. The specimen was changed its posture as neutral (flexion0° abduction0° external rotation0°), flexion (flexion60° abduction0° external rotation0°), abduction (flexion0° abduction30° external rotation0°) and extension (extension20° abduction0° external rotation0°). Each position was measured in six sequential conditions, which are normal, Incised iliofemoral ligament, Circumferentially incised capsule, resected capsule, labral radial tear and resected labrum. After measurement joint surface was observed to evaluate the joint condition.[Introduction]
[Materials & Methods]
We have previously described the mid- to long-term
results of conventional simple varus intertrochanteric osteotomy
for osteonecrosis of the femoral head, showing that 19 of the 26
hips had good or excellent results. We extended the follow-up to
a mean of 18.1 years (10.5 to 26) including a total of 34 hips in
28 patients, with a mean age at surgery of 33 years (19 to 53).
There were 18 men and ten women and 25 hips (74%) had a satisfactory
result with a Harris hip score ≥ 80. In all, six hips needed total
hip replacement (THR) or hemiarthroplasty. The collapse of the femoral
head or narrowing of the joint space was found to have progressed
in nine hips (26%). Leg shortening after osteotomy was a mean of
19 mm (8 to 36). With conversion to THR or hemiarthroplasty as the
endpoint, the ten-year survival rate was 88.2% (95% confidence interval
(CI) 82.7 to 93.7) and the 20-year survival rate was 79.7% (95%
CI 72.1 to 87.3); four hips were converted at ten years and other
two hips were converted at 20 years. Shortening of the leg after osteotomy remains a concern; however,
the conventional varus half-wedge osteotomy provides favourable
long-term results in hips with less than two-thirds of the medial
part of the femoral head affected by necrotic bone and with normal
bone superolaterally.
We report the mid- to long-term (mean 20.3 years, 10 to 32.5) results of the Chiari pelvic osteotomy in patients with pre- to advanced stage osteoarthritis in dysplastic hips. We followed 163 Japanese patients (173 hips) with a mean age at surgery of 20 years (9 to 54). Overall, 124 hips (72%) had satisfactory results, with Harris hip scores ≥ 80. Satisfactory results were seen in 105 of 134 hips with pre- or early osteoarthritis (78%) and 19 of 39 hips with advanced osteoarthritis (49%). A total of 15 hips (9%) underwent a total hip replacement (THR) with a mean interval between osteotomy and THR of 16.4 years. With conversion to THR as the endpoint, the 30-year survival rate was 85.9% (95% confidence interval 82.3 to 89.5). It was 91.8% for patients with pre- or early osteoarthritis and 43.6% for those with advanced osteoarthritis (p < 0.001). We now perform the Chiari osteotomy for patients with dysplastic hips showing poor joint congruency and who prefer a joint-conserving procedure to THR.
Thigh pain appears often after THA used of the cement-less femoral components, but the appearance mechanism of thigh pain does not have been elucidated. As one factor of manifestation of thigh pain, it has been guessed that the pressure from the inside of medullary cavity of bone by the stem. The purpose of this study is confirming whether the flexor reflex is caused, by using the femur of a rabbit that applied the pressure from the inside of medullary cavity of bone. Japanese white rabbits with weight of about 3kg were used. Evaluation of the appearance of the pain by the pressure was performed by measurement of the hind leg flexor activity produced by the flexor reflex. After confirming that appearance of the muscles activity by the pain reflex from adding the pain stimulus to the hind leg skin of rabbits, we loaded of the pressure into the inside of medullary cavity of bone and observed whether the muscles activity appears. As the laboratory animals model, we prepared two kinds of rabbits by the difference in the amount of reaming. And we tested how the differences show up between these two kinds of rabbits. In the rabbits with few amounts of reaming, the flexor reflex appeared in low pressure. But, in the rabbits with many amounts of reaming, the flexor reflex did not appear in high pressure, either. It is known that the somatic sensory nerves are distributed in the bone, and it is known that the sensory nerve ends exist in the medullary cavity of bone. It was suggested that the pain is induced, when the sensory nerve ends remained in the inside of medullary cavity of bone and the pressure in whicha reaction is possible was carried out there.
Prosthetic impingement after THA is to different for the angle and shape of the implant. Purpose of this study is examine the range of motion(ROM) on a computer when angle and shape of the implant are changed. The 3D implant models were created on a computer. The angle was measured in the flexion, extension, adduction direction byevery 0.1 degrees. There are three kinds of acetabular abduction angle, two kinds of acetabular anteversion angle and two kinds of femoral anteversion angle. There are three kinds of the radius of neck and the neck shaft angle. All 324 patterns of the above model were measured. When the radius of neck decreased, the ROM increased in all cases. When the neck shaft angle decreased, the ROM increased by almost all cases. When the acetabular anteversion angle increased, the ROM of flexion direction increased and adduction direction decreased, and as for the extension direction, all the factors had influenced the change in the ROM. When the acetabular angle increased, the ROM of the extension direction increased and the flexion directions decreased. As for adduction direction, femoral anteversion angle, acetabular anteversion angles, and the radius of neck had influenced the ROM. When the femoral anteversion angle increased, the ROM of flexion direction increased and extension, adduction direction decreased. The clinical ROM is affected by the impingement of non-implant and the strain of the soft tissue. Therefore, It’ s considered that the clinical ROM is smaller than the ROM which was investigated in this study in many cases. When the radius of neck and the neck shaft angle decrease, the increase of the ROM expected. However the radius of the neck should not be decreased too much to avoid the decrease of the neck strength.
The use of prostheses with porous surfaces in cementless total hip arthroplasty now predominates. Beads are popular for use as a porous coating, but their mechanical strength may be insufficient because of displacement of some of the beads from the coating. In this study, we propose a new porous surface, created by making direct holes in the metal surface using a YAG laser. A titanium-alloy (Ti-6Al-4V) rod was used. A Bead-type prosthesis was made by diffusion bonding pure titanium beads to the rod; it was 5 mm in diameter and 35% in porosity. A Laser type was made by directly creating holes in the same rod surface using a YAG laser; it was 5 mm in diameter and 33.7% in porosity. Both implants were evaluated in vivo using the hemitranscortical cylindrical model in two beagle dogs. Four prostheses were implanted into each femur through the lateral cortex, for a total of eight of each type, and remained in place for 12 weeks. Except for the proximal implant, push-out tests were performed to measure the shear strength of fixation of the implants to the cortical bone. For observations of the implant-bone interface, decalcified specimens of the proximal femur were stained with toluidine blue and observed with an optical microscope. The mean push-out strength of the Laser type was approximately 10.2 MPa and that of the Beads type was approximately 10.7 MPa. There was no significant difference in interface push-out strength between the groups. Bone ingrowth into both types was sufficient, however, some specimens of the Beads type demonstrated displacement of some of the beads from the rod surface. This study indicates that a porous surface created with a YAG laser might be useful not only for its shear strength, but also for the strength of the surface itself.