Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 14 - 14
1 Feb 2021
LaCour M Ta M Callaghan J MacDonald S Komistek R
Full Access

Introduction

Current methodologies for designing and validating existing THA systems can be expensive and time-consuming. A validated mathematical model provides an alternative solution with immediate predictions of contact mechanics and an understanding of potential adverse effects. The objective of this study is to demonstrate the value of a validated forward solution mathematical model of the hip that can offer kinematic results similar to fluoroscopy and forces similar to telemetric implants.

Methods

This model is a forward solution dynamic model of the hip that incorporates the muscles at the hip, the hip capsule, and the ability to modify implant position, orientation, and surgical technique. Muscle forces are simulated to drive the motion, and a unique contact detection algorithm allows for virtual implantation of components in any orientation. Patient-specific data was input into the model for a telemetric subject and for a fluoroscopic subject.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 93 - 93
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Introduction

Conventional hip radiographs allow surgeons, during preoperative planning, to make important decisions. Size and location of implants are routinely measured by overlaying schematics of the implanted components onto preoperative radiographs. Most currently available planning tools are in two-dimensions (2D), using X-ray images and 2D templates of the implants. Determination of the ideal component size requires two radiographic views of the femur: the anterior-posterior (AP) and the lateral direction. The surgeon uses this information to determine component sizes. Even though this approach has been used for many years leading to very good results, this manual process potentially carries multiple shortcomings. The biggest issue with the AP X-ray image is the fact that it is 2D in nature while the measurement's objective is to obtain three-dimensional (3D) parameters.

Objective

The objective of this study is to derive a methodology to automatically select correct THA implant sizes while keeping the anatomical center of each specific patient within a forward solution model (FSM) that predicts post-operative outcomes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 61 - 61
1 Feb 2020
LaCour M Nachtrab J Ta M Komistek R
Full Access

Introduction

Traditionally, conventional radiographs of the hip are used to assist surgeons during the preoperative planning process, and these processes generally involve two-dimensional X-ray images with implant templates. Unfortunately, while this technique has been used for many years, it is very manual and can lead to inaccurate fits, such as “good” fits in the frontal view but misalignment in the sagittal view. In order to overcome such shortcomings, it is necessary to fully describe the morphology of the femur in three dimensions, therefore allowing the surgeon to successfully view and fit the components from all possible angles.

Objective

The objective of this study was to efficiently describe the morphology of the proximal femur based on existing anatomical landmarks for use in surgical planning and/or forward solution modeling.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 94 - 94
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Introduction

Obtaining accurate anatomical landmarks may lead to a better morphologic understanding, but this is challenging due to the variation of bony geometries. A manual approach, non-ideal for surgeons or engineers, requires a CT or MRI scan, and landmarks must be chosen based on the 3D representation of the scanned data. Ideally, anatomical landmarking is achieved using either a statistical shape model or template matching. Statistical modeling approaches require multitude of training data to capture population variation. Prediction of anatomical landmarks through template matching techniques has also been extensively investigated. These techniques are based on the minimization or maximization of an objective or cost function. As is the nature of non-rigid algorithms, these techniques can fail in the local maxima if the template and new bone models have noise or outliers. Therefore, a combination of rigid and non-rigid registration techniques is needed, in order to obtain accurate anatomical landmarks and improve the prediction process.

Objective

The objective of this study was to find a way to efficiently obtain accurate anatomical landmarks based on an existing template's landmarks for use in a forward solution model (FSM) to predict patient specific mechanics.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 62 - 62
1 Feb 2020
LaCour M Nachtrab J Ta M Komistek R
Full Access

Introduction

Previous research defines the existence of a “safe zone” (SZ) pertaining to acetabular cup implantation during total hip arthroplasty (THA). It is believed that if the cup is implanted at 40°±10° inclination and 15°±10° anteversion, risk of dislocation is reduced. However, recent studies have documented that even when the acetabular cup is placed within the SZ, high incidence dislocation and instability remains due to the combination of patient-specific configuration, cup diameter, head size, and surgical approach. The SZ only investigates the angular orientation of the cup, ignoring translational location. Translational location of the cup can cause a mismatch between anatomical hip center and implanted cup center, which has not been widely explored.

Objective

The objective of this study is to define a zone within which the implanted joint center can be altered with respect to the anatomical joint center but will not increase the likelihood of post-operative hip separation or dislocation.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 95 - 95
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Summary

The mathematical model has proven to be highly accurate in measuring leg length before and after surgery to determine how leg length effects hip joint mechanics.

Introduction

Leg length discrepancy (LLD) has been proven to be one of the most concerning problems associated with total hip arthroplasty (THA). Long-term follow-up studies have documented the presence of LLD having direct correlation with patient dissatisfaction, dislocation, back pain, and early complications. Several researchers sought to minimize limb length discrepancy based on pre-operative radiological templating or intra-operative measurements. While often being a common occurrence in clinical practice to compensate for LLD intra-operatively, the center of rotation of the hip joint has often changes unintentionally due to excessive reaming. Therefore, the clinical importance of LLD is still difficult to solve and remains a concern for clinicians.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 61 - 61
1 Apr 2019
Ta M LaCour M Sharma A Komistek R
Full Access

During the preoperative examination, surgeons determine whether a patient, with a degenerative hip, is a candidate for total hip arthroplasty (THA). Although research studies have been conducted to investigate in vivo kinematics of degenerative hips using fluoroscopy, surgeons do not have assessment tools they can use in their practice to further understand patient assessment. Ideally, if a surgeon could have a theoretical tool that efficiently allows for predictive post-operative assessment after virtual surgery and implantation, they would have a better understanding of joint conditions before surgery.

The objectives of this study were (1) to use a validated forward solution hip model to theoretically predict the in vivo kinematics of degenerative hip joints, gaining a better understanding joint conditions leading to THA and (2) compare the predicted kinematic patterns with those derived using fluoroscopy for each subject.

A theoretical model, previously evaluated using THA kinematics and telemetry, was used for this study, incorporating numerous muscles and ligaments, including the quadriceps, hamstring, gluteus, iliopsoas, tensor fasciae latae, an adductor muscle groups, and hip capsular ligaments. Ten subjects having a pre-operative degenerative hip were asked to perform gait while under surveillance using a mobile fluoroscopy unit. The hip joint kinematics for ten subjects were initially assessed using in vivo fluoroscopy, and then compared to the predicted kinematics determined using the model. Further evaluations were then conducted varying implanted component position to assess variability.

The fluoroscopic evaluation revealed that 33% of the degenerative hips experienced abnormal hip kinematics known as “hip separation” where the femoral head slides within the acetabulum, resulting in a decrease in contact area. Interestingly, the mathematical model produced similar kinematic profiles, where the femoral head was sliding within the acetabulum (Figure 1).

During swing phase, it was determined that this femoral head sliding (FHS) is caused by hip capsular laxity resulting in reducing joint tension. At the point of maximum velocity of the foot, the momentum of the lower leg becomes too great for capsule to properly constrain the hip, leading to the femoral component pistoning outwards.

During stance phase, kinematics of degenerative hips were similar to kinematics of a THA subject with mal-positioning of the acetabular cup. Further evaluation revealed that if the cup was placed at a position other than its native, anatomical center, abnormal forces and torques acting within the joint lead to the femoral component sliding within the acetabular cup. It was hypothesized that in degenerative hips, similar to THA, the altered center of rotation is a leading influence of FHS (Figure 2).

The theoretical model has now been validated for subjects having a THA and degenerative subjects. The model has successfully derived kinematic patterns similar to subjects evaluated using fluoroscopy. The results in this study revealed that altering the native joint center is the most influential factor leading to FHS, or more commonly known as hip separation. A new module for the mathematical model is being implemented to simulate virtual surgery so that the surgery can pre- operatively plan and then simulate post-operative results.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 64 - 64
1 Apr 2019
Dessinger G Ta M Zeller I Nachtrab J Sharma A Komistek R
Full Access

Introduction

Many fluoroscopic studies on total knee arthroplasty (TKA) have identified kinematic variabilities compared to the normal knee, with many subjects experiencing paradoxical motion patterns. The intent of this research study was to investigate the results of customized-individual-made (CIM) and off-the-shelf (OTS) PS and PCR TKA to determine kinematic variabilities and to assess these kinematic patterns with those previously documented for the normal knee.

Methods

In vivo kinematics were assessed for 151 subjects – 44 with CIM-PCR, 75 with OTS-PCR, 14 with CIM-PS, and 18 with OTS-PS TKA – using a mobile fluoroscopic system and then evaluated using a 3D-2D registration technique. This was a multicenter evaluation so the group of implants were implanted by two surgeons and selected based on recruitment criteria. Each subject performed a deep knee bend activity (DKB) while under fluoroscopy. The kinematics assessed for each subject were condyle translation (LAP/MAP) and rotation (axial rotation).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 60 - 60
1 Apr 2019
Ta M LaCour M Sharma A Komistek R
Full Access

Currently, hip implant designs are evaluated experimentally using mechanical simulators or cadavers, and total hip arthroplasty (THA) postoperative outcomes are evaluated clinically using long-term follow-up. However, these evaluation techniques can be both costly and time-consuming. Neither can provide an assessment of post-operative results at the onset of implant development. More recently, a forward-solution mathematical model was developed that functions as theoretical joint simulator, providing instant feedback to designers and surgeons alike. This model has been validated by comparing the model predictions with kinematic results from fluoroscopy for both implanted and non-implanted hips and kinetics from a telemetric hip. The model allows surgical technique modifications and implant component placement under in vivo conditions.

The objective of this study was to further expand the capabilities of the model to function as an intraoperative virtual surgical tool (Figure 1). This new module allows the surgeon to simulate surgery, then predict, compare, and optimize postoperative THA outcomes based on component placement, sizing choices, reaming and cutting locations, and surgical methods.

This virtual surgery tool simulates the quadriceps, hamstring, gluteus, iliopsoas, tensor fasciae latae, and an adductor muscle groups, as well as the hip capsular ligament groups. The model can simulate resecting, weakening, loosening, or tightening of soft tissues based on surgical techniques. Additionally, the model can analyze a variety of activities, including gait and deep flexion activities.

Initially, the virtual surgery module offers theoretical surgery tools that allow surgeons to alter surgical alignments, component designs, offsets, as well as reaming and cutting simulations. The virtual model incorporates a built-in CT scan bone database which will assist in determining muscle and ligament attachment sites as well as bony landmarks. The virtual model can be used to assist in the placement of both the femoral component and the acetabular cup (Figure 2).

Moreover, once the surgeon has decided on the placements of the components, they can use the simulation capabilities to run virtual human body maneuvers based on the chosen parameters. The simulations will reveal force, contact stress, and motion predictions of the hip joint (Figure 3). The surgeon can then choose to modify the positions accordingly or proceed with the surgery.

This new virtual surgical tool will allow surgeons to gain a better understanding of possible post-operative outcomes under pre-operative conditions or intra-operatively. Simulations using the virtual surgery model has revealed that improper component placement may lead to non-ideal post-operative function, which has been simulated using the model. Further evaluation is ongoing so that this new module can reveal more information pre-operatively, allowing a surgeon to gain ample information before surgery, especially with difficult and revision cases.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 22 - 22
1 Apr 2018
Ta M Dessinger G Zeller I Kurtz W Anderle M Sharma A Komistek R
Full Access

Introduction

Previous fluoroscopic studies of total knee arthroplasty (TKA) have revealed significant kinematic differences compared to the normal knee. Often, subjects having a TKA experienced kinematic patterns opposite of the normal knee. Therefore, the objective of this study was to determine the in vivo kinematics of subjects implanted with either a customized-individual-made (CIM) or the traditional (OTS) PS TKA to determine if customization offers a distinct advantage to the patient.

Methods

In-vivo kinematics were determined for 33 subjects, 15 having a CIM-TKA and 18 having OTS-TKA using a mobile fluoroscopic system and a 3D–2D registration technique. All of the subjects were implanted by a single surgeon and were scored to be clinically successful. Each subject underwent fluoroscopic observation while performing a weight-bearing (WB) deep knee bend (DKB) and chair rise (CR). The two groups were then compared for the range of motion, condyle translation, and axial rotation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 38 - 38
1 Apr 2018
LaCour M Ta M Sharma A Komistek R
Full Access

Background

In vivo fluoroscopic studies have proven that femoral head sliding and separation from within the acetabular cup during gait frequently occur for subjects implanted with a total hip arthroplasty. It is hypothesized that these atypical kinematic patterns are due to component malalignments that yield uncharacteristically higher forces on the hip joint that are not present in the native hip. This in vivo joint instability can lead to edge loading, increased stresses, and premature wear on the acetabular component.

Objective

The objective of this study was to use forward solution mathematical modeling to theoretically analyze the causes and effects of hip joint instability and edge loading during both swing and stance phase of gait.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 37 - 37
1 Apr 2018
LaCour M Ta M Sharma A Komistek R
Full Access

Background

Extensive research has previously been conducted analyzing the biomechanical effects of rotational changes (i.e. version and inclination) of the acetabular cup. Many sources, citing diverse dislocation statistics, encourage surgeons to strive for various “safe zones” during the THA operation. However, minimal research has been conducted, especially under in vivo conditions, to assess the consequences of cup translational shifting (i.e. offsets, medial and superior reaming, etc.). While it is often the practice to medialize the acetabular cup intraoperatively, there is still a lack of information regarding the biomechanical consequences of such cup medializations and medial/superior malpositionings.

Objective

Therefore, the objective of this study is to use a validated forward solution mathematical model to vary cup positioning in both the medial and superior directions to assess simulated in vivo kinematics.