When fixing a mid or distal periprosthetic femoral fracture with an existing hip replacement, creation of a stress-riser is a significant concern. Our aim was to identify the degree of overlap required to minimise the risk of future fracture between plate and stem. Each fixation scenario was tested using 4th generation composite femoral Sawbones®. Each sawbone was implanted with a collarless polished cemented stem with polymethyl methacrylate bone cement and cement restrictor. 4.5mm broad Peri-loc™ plates were positioned at positions ½, 1 and 2 shaft diameters (SD) proximal and distal to the tip of the femoral stem. Uni-axial strain gauges (medial and lateral longitudinal gauges, anterior and posterior torsional gauges) measured microstrain at tip of the femoral stem with a standard load of 500N in axial, 3-point lateral and composite torsion/posterior loading using an Instron machine. With axial loading fixation with 2SD proximal resulted in the least amount of strain, in both tension & compression, at the tip of the femoral stem. Fixation with 4 unicortical screws was significantly better than 2 alternating unicortical screws (mean microstrain difference 3.9 to 15.3, p<0.0001). With lateral 3-point loading fixation with 2SD proximal overlap and 2 alternating unicortical screws resulted in the least amount of strain, in both tension and compression, at the tip of the femoral stem (p<0.0001). With torsion & posterior displacement 2SD proximal fixation resulted in the least amount of rotational strain. There was no significant difference between 4 unicortical screws compared to 2 alternating unicortical screws (p>0.05 in 3 of 4 gauges). Fixation of midshaft or distal femoral fractures with a well-fixed total hip arthroplasty should have at least 2 shaft diameters of proximal overlap with a 4.5mm broad plate. It is not clear if 4 unicortical screws or 2 alternating screws are optimal.