Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 32 - 32
23 Feb 2023
Green N Barlow G Erbulut D Stubican M Vindenes F Glatt V Tetsworth K
Full Access

This study investigated concurrent talar dome injuries associated with tibial pilon fractures, mapping their distribution across the proximal talar dome articular surface. It compared the two main mechanisms of injury (MOI), falling from a height and motor vehicle accident (MVA), and whether the fractures were open or closed.

From a previously compiled database of acute distal tibial pilon fractures (AO/OTA 43B/C) in adults of 105 cases, 53 cases were identified with a concurrent injury to the talar dome with a known mechanism of injury and in 44 it was known if the fracture was open or closed. Case specific 2D injury maps were created using a 1x1mm grid, which were overlayed in an Excel document to allow for comparative analyses. A two-way ANOVA was conducted that examined the effect of both MOI and if the fracture was open or closed on what percentage of the talar dome surface was injured.

There was a statistically-significant difference between the average percentage of injured squares on the talar dome by both whether the fracture was open or closed (f(1)=5.27, p= .027) and the mechanism of injury (f(1)=8.08, p= .007), though the interaction between these was not significant (p= .156). Open injuries and injuries that occurred during an MVA were more likely to increase the surface area of the talar dome injuries.

We have identified both MOI and if the fracture was either open or closed impacts the size of the injury present on the talar dome. Future research will investigate the aetiology of the differences noted, highlighting the clinical implications.

Surgeons treating tibial pilon fractures caused by either a MVA or an open fracture, should be aware of an increased risk of large injuries to the surface of the talar dome.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 82 - 82
10 Feb 2023
Tetsworth K Green N Barlow G Stubican M Vindenes F Glatt V
Full Access

Tibial pilon fractures are typically the result of high-energy axial loads, with complex intra- articular fractures that are often difficult to reconstruct anatomically. Only nine simultaneous pilon and talus fractures have been published previously, but we hypothesised the chondral surface of the dome is affected more frequently.

Data was acquired prospectively from 154 acute distal tibial pilon fractures (AO/OTA 43B/C) in adults. Radiographs, photographs, and intra-operative drawings of each case were utilised to document the presence of any macroscopic injuries of the talus. Detailed 1x1mm maps were created of the injuries in each case and transposed onto a statistical shape model of a talus; this enables the cumulative data to be analysed in Excel. Data was analysed using a Chi-squared test.

From 154 cases, 104 were considered at risk and their talar domes were inspected; of these, macroscopic injuries were identified in 55 (52.4%). The prevalence of talar dome injury was greater with B-type fractures (53.5%) than C-type fractures (31.5%) (ρ = .01). Injuries were more common in men than women and presented with different distribution of injuries (ρ = .032). A significant difference in the distribution of injuries was also identified when comparing falls and motor vehicle accidents (ρ = .007).

Concomitant injuries to the articular surface of the dome of the talus are relatively common, and this perhaps explains the discordance between the post-operative appearance following internal fixation and the clinical outcomes observed. These injuries were focused on the lateral third of the dome in men and MVAs, whereas women and fall mechanism were more evenly distributed.

Surgeons who operatively manage high-energy pilon fractures should consider routine inspection of the talar dome to assess the possibility of associated macroscopic osteochondral injuries.