Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 70 - 70
1 Apr 2018
He X Milz S Michalke B Sprecher CM Gahlert M Röhling S Kniha H Högg C Reichl FX
Full Access

The aim of this study is to compare the release of titanium (Ti) and zirconium (Zr) into the tissue surrounding Ti- and ZrO2-implants.

Methyl methacrylate embedded mini pig maxillae with 6 Ti-implants and 4 ZrO2-implants were analysed after 12-weeks of implantation. The spatial distribution of elemental Ti and Zr in maxillae near implants was assessed with laser ablation (LA)-inductively coupled plasma (ICP)-mass spectrometry (MS). From each maxilla two bone slices adjacent to the implants were measured. The contents of Ti and Zr in these bone slices were determined by ICP-MS and ICP-optical emission spectrometry.

Increased intensity of Ti and Zr could be detected in bone tissues at a distance of 891±398 µm (mean ± SD) from Ti-implants and 927±404 µm from ZrO2-implants. The increased intensity was mainly detected near implant screw threads. The average Ti content detected in 11 bone slices from samples with Ti-implants was 1.67 mg/kg, which is significantly higher than the Ti content detected in 8 slices from samples with ZrO2-implants. The highest Ti content detected was 2.17 mg/kg. The average Zr content in 4 bone slices from samples with ZrO2-implants is 0.59 mg/Kg, the other 4 bone slices showed Zr contents below the detection limit (

After 12-weeks of implantation, increased intensity of Ti and Zr can be detected in bone tissues near Ti- and ZrO2-implants. The results show that Ti content released from Ti-implants is higher than the Zr content released from ZrO2-implants.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1049 - 1053
1 Aug 2009
Braunstein V Kirchhoff C Ockert B Sprecher CM Korner M Mutschler W Wiedemann E Biberthaler P

In 100 patients the fulcrum axis which is the line connecting the anterior tip of the coracoid and the posterolateral angle of the acromion, was used to position true anteroposterior radiographs of the shoulder. This method was then compared with the conventional radiological technique in a further 100 patients.

Three orthopaedic surgeons counted the number of images without overlap between the humeral head and glenoid and calculated the amount of the glenoid surface visible in each radiograph. The analysis was repeated for intraobserver reliability. The learning curves of both techniques were studied.

The amount of free visible glenoid space was significantly higher using the fulcrum-axis method (64 vs 31) and the comparable glenoid size increased significantly (8.56 vs 6.47). Thus the accuracy of the anteroposterior radiographs of the shoulder is impaired by using this technique. The intra and interobserver reliability showed a high consistency. No learning curve was observed for either technique.