Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 55 - 55
1 May 2012
Mellon SJ Kwon Y Simpson DJ Murray DW Gill HS
Full Access

Introduction

Metal-on-metal (MoM) hip resurfacing arthroplasty is a popular choice for young and active patients. However, there are concerns recently regarding soft tissue masses or pseudotumours. The appearance of these complications is thought to be related blood metal ion levels. The level of metal ions in blood is thought to be the result of MoM wear. In the present study the contribution of acetabulum orientation to stress distribution was investigated.

Methods

Four subjects with MoM resurfacings and with known blood metal ion levels underwent motion analysis followed by CT scans. The positions of the acetabular (cup) and femoral components were determined the CT data relative to local coordinate systems in the pelvis (PCS) and the femur (FCS). Transformations, calculated from the motion analysis data, between the PCS and FCS gave the position of the cup relative to the femoral component for each frame of captured motion data.

Hip reaction forces were taken from published data1. The intersection of hip reaction force with each subject's cup and the increase in inclination required to move the force to the edge of the cup was calculated for 2% intervals during the stance phase of gait. Finite element models representing each subject's cup and femoral components were created and contact stresses were determined for the native cup inclination angle. For each model, the effect of increasing the inclination of the cup, by up to 10°, in 1° increments, was determined.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 59 - 59
1 May 2012
Simpson DJ Kendrick B Thomas G Gill H O'Connor J Murray DW
Full Access

Introduction

The results of the original mobile bearing Oxford unicompartmental knee replacement (UKR) in the lateral compartment have been disappointing because of high dislocation rates (11%). This original implant used a flat bearing articulation on the tibial tray. To address the issue of dislocation a new implant (domed tibia with biconcave bearing to increase entrapment) was introduced with a modified surgical technique. The aim of this study was to compare the risk of dislocation between a domed and flat lateral UKR.

Methods

Separate geometric computer models of an Oxford mobile bearing lateral UKR were generated for the two types of articulation between the tibial component and the meniscal bearing: Flat-on-flat (flat) and Concave-on-convex (domed). Each type of mobile bearing was used to investigate three distinct dislocation modes observed clinically: lateral to medial dislocation, with the bearing resting on the tray wall (L-M-Wall); medial to lateral dislocation, out of the joint space (M-L); anterior to posterior dislocation, out of the joint space (A-P).

A size C tray and a medium femoral component and bearing were used in all models. The femoral component, tibial tray and bearing were first aligned in a neutral position. For each dislocation the tibial tray was restrained in all degrees of freedom. The femoral component was restrained from moving in the anterior-posterior directions and in the medial-lateral directions. The femoral component was also restrained from rotating about the anterior-posterior, medial-lateral and superior-inferior directions. This meant that the femoral component was only able to move in the superior-inferior direction. Different bearing sizes were inserted into the model and the effect that moving the femoral component medially and laterally had on the amount of distraction required to cause bearing dislocation was investigated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 80 - 80
1 May 2012
Thomas GER Simpson DJ Gill HS Glyn-Jones S Beard DJ Murray DW EPOS study group
Full Access

Femoral stem varus has been associated with poorer results. We report the incidence of varus/valgus malalignment of the Exeter polished, double taper design in a multicentre prospective study. The surgical outcomes at a minimum of five year and complication rates are also reported.

A multicentre prospective study of 987 total hip replacements was undertaken to investigate whether there is an association between surgical outcome and femoral stem malalignment. The primary outcome measure was the change in the Oxford hip score (OHS) at five years. Secondary outcomes included the rate of dislocation and revision.

The incidence of varus and valgus malignment were 7.1% and 2.6% respectively. There was no significant difference in OHS between neutral and malaligned femoral stems at 5 years (neutral, mean = 40.2; varus, mean 39.3, p = 0.465; valgus, mean = 40.9, p = 0.605). There was no significant difference in dislocation rate between the groups (p = 0.66). There was also no significant difference in revision rate (p = 0.34).

This study provides evidence that the Exeter stem is extremely tolerant of varus and valgus malalignment, both in terms of outcome and complication rate.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 12 - 12
1 May 2012
Simpson DJ Kendrick B Price AJ Murray D Gill H
Full Access

Introduction

Unicompartmental Knee Replacement (UKR) is an appealing alternative to Total Knee Replacement (TKR) when the patient has isolated compartment osteoarthritis (OA). A common observation post-operatively is radiolucency between the tibial tray wall and the bone. In addition, some patients complain of persistent pain following implantation with a UKR; this may be related to elevated bone strains in the tibia. The aim of this study was to investigate the mechanical environment of the tibia bone adjacent to the tray wall, following UKR, to determine whether this region of bone resorbs, and how altering the mechanical environment affects tibia strains.

Materials and methods

A finite element (FE) model of a cadaver tibia implanted with an Oxford UKR was used in this study, based on a validated model. A single static load, measured in-vivo during a step-up activity was used. There was a 1 mm layer of cement surrounding the keel in the cemented UKR, and the cement filled the cement pocket. In accordance with the operating procedure, no cement was used between the tray wall and bone. For the cementless UKR a layer of titanium filled the cement pocket. An intact tibia was used to compare to the cemented and cementless UKR implanted tibiae. The tibia was sectioned by the tray wall, defining the radiolucency zone (parallel to the vertical tray wall, 2 mm wide with a volume of 782.5 mm3), corresponding to the region on screened x-rays where radiolucencies are observed. Contact mechanics algorithms were used between all contacting surfaces; bonded contact was also introduced between the tray wall and adjacent bone, simulating a mechanical tie between them. Strain energy density (SED), was compared between the intact and implanted tibia for the radiolucency zone. Equivalent strains were compared on the proximal tibia between the intact and implanted tibia models. Forty patients (20 cemented, 20 cementless) who had undergone UKR were randomly selected from a database, and assessed for radiolucency.