Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 237 - 241
1 Feb 2014
Miyake J Shimada K Oka K Tanaka H Sugamoto K Yoshikawa H Murase T

We retrospectively assessed the value of identifying impinging osteophytes using dynamic computer simulation of CT scans of the elbow in assisting their arthroscopic removal in patients with osteoarthritis of the elbow. A total of 20 patients were treated (19 men and one woman, mean age 38 years (19 to 55)) and followed for a mean of 25 months (24 to 29). We located the impinging osteophytes dynamically using computerised three-dimensional models of the elbow based on CT data in three positions of flexion of the elbow. These were then removed arthroscopically and a capsular release was performed.

The mean loss of extension improved from 23° (10° to 45°) pre-operatively to 9° (0° to 25°) post-operatively, and the mean flexion improved from 121° (80° to 140°) pre-operatively to 130° (110° to 145°) post-operatively. The mean Mayo Elbow Performance Score improved from 62 (30 to 85) to 95 (70 to 100) post-operatively. All patients had pain in the elbow pre-operatively which disappeared or decreased post-operatively. According to their Mayo scores, 14 patients had an excellent clinical outcome and six a good outcome; 15 were very satisfied and five were satisfied with their post-operative outcome.

We recommend this technique in the surgical management of patients with osteoarthritis of the elbow.

Cite this article: Bone Joint J 2014;96-B:237–41.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 28 - 28
1 Jan 2003
Shimada K Saito M Nakashima T Wigderowitz C Rowley D Namba J Akita S Yoshikawa H
Full Access

We developed a new type of bioactive bone cement, CAP (Hydroxyapatite composite resin; composed of 77% w/w hydroxyapatite granules and bisphenol-A glycidyl methacrylate-based resin) for bony defect filling. Elastic modulus of CAP is similar to a cortical bone, while it is injectable before hardening and physiologically bonding with bone in 4 to 8 weeks. We present a new method of treatment for unstable Colles’ fracture with this material in clinical use.

Experimental comminuted Colles’ fracture was produced in three fresh frozen cadavara. Fracture was reduced and fixed percutaneously with K-wires. 4.5mm drill hole was opened on the radial cortex 3cm proximal to the fracture site. Comminuted fragments were pushed-up to the subchondral area with a blunt rod and CAP was injected through the same way. After cement hardening, K-wires were removed. X-ray photos were examined before fracture, after fracture and after reconstruction with CAP, in order to evaluate the shape of the radius. CT was examined to evaluate the placement of CAP.

Radiographic parameters of radii were well recovered after reconstruction with CAP. Over correction of the radial length was observed in one bone but good reduction was generally achieved (Table). This means realignment of the distal radioulnar joint, which results in good outcome clinically. In transverse section of CT, 41 to 69% (average 55%) of subchondral area was filled with CAP. Filling of CAP was better in an osteoporotic bone. These results show the usefulness of this material for treatment of unstable Colles’ fracture especially in osteoporotic patients.