Thoracic hyperkyphosis (TH – Cobb angle >40°) is correlated with rotator cuff arthropathy and associated with anterior tilting and protraction of scapula, impacting the glenoid orientation and the surrounding musculature. Reverse total shoulder arthroplasty (RTSA) is a reliable surgical treatment for patients with rotator cuff arthropathy and recent literature suggests that patients with TH may have comparable range of motion after RTSA. However, there exists no study reporting the possible link between patient-reported outcomes, humeral retroversion and TH after RTSA. While the risk of post-operative complications such as instability, hardware loosening, scapular notching, and prosthetic infection are low, we hypothesize that it is critical to optimize the biomechanical parameters through proper implant positioning and understanding patient-specific scapular and thoracic anatomy to improve surgical outcomes in this subset of patients with TH. Patients treated with primary RTSA at an academic hospital in 2018 were reviewed for a two-year follow-up. Exclusion criteria were as follows: no pre-existing chest radiographs for Cobb angle measurement, change in post-operative functional status as a result of trauma or medical comorbidities, and missing component placement and parameter information in the operative note. As most patients did not have a pre-operative chest radiograph, only seven patients with a Cobb angle equal to or greater than 40° were eligible. Chart reviews were completed to determine indications for RTSA, hardware positioning parameters such as inferior tilting, humeral stem retroversion, glenosphere size/location, and baseplate size. Clinical data following surgery included review of radiographs and complications. Follow-up in all patients were to a period of two years. The American Shoulder and Elbow Surgeons (ASES) Shoulder Score was used for patient-reported functional and pain outcomes. The average age of the patients at the time of RTSA was 71 years old, with six female patients and one male patient. The indication for RTSA was primarily rotator cuff arthropathy. Possible correlation between Cobb angle and humeral retroversion was noted, whereby, Cobb angle greater than 40° matched with humeral retroversion greater than 30°, and resulted in significantly higher ASES scores. Two patients with mean Cobb angle of 50° and mean humeral retroversion 37.5° had mean ASES scores of 92.5. Five patients who received mean humeral retroversion of 30° had mean lower ASES scores of 63.7 (p < 0 .05). There was no significant correlation with glenosphere size or position, baseplate size, degree of inferior tilting or lateralization. Patient-reported outcomes have not been reported in RTSA patients with TH. In this case series, we observed that humeral stem retroversion greater than 30° may be correlated with less post-operative pain and greater patient satisfaction in patients with TH. Further clinical studies are needed to understanding the biomechanical relationship between RTSA, humeral retroversion and TH to optimize patient outcomes.
Traditionally, open reduction and internal fixation (ORIF) and hemiarthroplasty (HA) have been the surgical treatments of choice for displaced proximal humerus fractures (PHF) despite high rates of fixation failure and tuberosity nonunion, especially in the elderly population with poor bone quality. Recently, there has been a significant increase in the use of reverse total shoulder arthroplasty (RTSA) as a treatment option in both acute fractures, as well as a salvage procedure for fracture sequelae (i.e., malunion, nonunion, fixation failure, tuberosity non-union). Despite the growing enthusiasm it remains unknown whether functional outcomes after RTSA as a salvage procedure are similar to those following acute RTSA. As a result, the purpose of this systematic review was to compare functional outcomes after RTSA as a primary versus salvage procedure for displaced PHF in the elderly. A literature search of the electronic databases EMBASE, MEDLINE, and PubMed was conducted to identify all studies comparing RTSA as a primary treatment for displaced PHF and as a salvage procedure for failed initial management. Only studies with a minimum follow-up of two years were included. Data pertaining to range of motion, patient reported outcome measures and complications were extracted from eligible studies and entered into a meta-analysis software package (RevMan version 5.1, The Cochrane Collaboration) for pooled analysis. The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of eligible studies. The search identified four studies consisting of 200 patients with a mean age of 73.3 years and a mean follow-up of 3.2 years. There were a total of 76 patients (75% female) who underwent acute RTSA following displaced PHF, while 124 patients (77% female) required salvage RTSA for failure of initial treatment. Primary RTSA was found to have significantly higher American Shoulder and Elbow (ASES) (P = 0.04), Constant (P = 0.01) and University of California at Los Angeles (UCLA) (P = 0.0004) scores compared to salvage RTSA. Forward flexion (P = 0.001) and external rotation (P< 0.0001) were significantly greater amongst those undergoing RTSA acutely versus as a salvage procedure. The odds of having a complication (e.g., infection, dislocation, fracture) were 76% lower amongst those who had primary RTSA compared to salvage RTSA (P = 0.02). The overall quality of eligible studies was moderate to high. Based on the current available evidence, elderly patients with displaced PHF have significantly greater range of motion, higher patient reported outcomes and lower risk of complications with primary RTSA compared to those undergoing RTSA as a salvage procedure. Additional prospective studies are warranted to confirm these findings.
To determine whether the findings from a landmark Canadian trial
assessing the optimal management of acute rupture of the Achilles
tendon influenced the practice patterns of orthopaedic surgeons
in Ontario, Canada. Health administrative databases were used to identify Ontario
residents ≥ 18 years of age with an Achilles tendon rupture from
April 2002 to March 2014. The rate of surgical repair (per 100 cases)
was calculated for each calendar quarter. A time-series analysis
was used to determine whether changes in the rate were chronologically
related to the dissemination of results from a landmark trial published
in February 2009. Non-linear spline regression was then used independently
to identify critical time-points of change in the surgical repair
rate to confirm the findings.Aims
Materials and Methods
The aims of this study were to establish the incidence of acute
Achilles tendon rupture (AATR) in a North American population, to
select demographic subgroups and to examine trends in the management
of this injury in the province of Ontario, Canada. Patients ≥ 18 years of age who presented with an AATR to an emergency
department in Ontario, Canada between 1 January 2003 and 31 December
2013 were identified using administrative databases. The overall
and annual incidence density rate (IDR) of AATR were calculated
for all demographic subgroups. The annual rate of surgical repair
was also calculated and compared between demographic subgroups.Aims
Patients and Methods
Over the last decade, there has been a growing body of level I evidence supporting non-operative management (focused on early range of motion and weight bearing) of acute Achilles tendon ruptures. Despite this emerging evidence, there have been very few studies evaluating its uptake. Our primary objective was to determine whether the findings from a landmark Canadian trial assessing the optimal management strategy for acute Achilles tendon ruptures influenced the practice patterns of orthopaedic surgeons in Ontario, Canada over a 12-year time period. As a second objective we examined whether patient and provider predictors of surgical repair utilisation differed before and after dissemination of the landmark trial results. Using provincial health administrative databases, we identified Ontario residents 18 years of age and older with an acute Achilles tendon rupture from April 2002 to March 2014. The proportion of surgically repaired ruptures was calculated for each calendar quarter and year. A time-series analysis using an interventional autoregressive integrated moving average (ARIMA) model was used to determine whether changes in the proportion of surgically repaired ruptures were chronologically related to the dissemination of results from a landmark Canadian trial by Willits et al. (first quarter, 2009). Spline regression was then used to independently identify critical time-points of change in the surgical repair rate to confirm our findings. A multivariate logistic regression model was used to assess for differences in patient and provider predictors of surgical repair utilisation before and after the landmark trial. From the second quarter of 2002 to the first quarter of 2010 the surgical repair rate remained constant at ∼21%, however, by the first quarter of 2014 it fell to 6.5%. A statistically significant decrease in the rate of surgical repair (P<0.001) was observed after the results from a landmark Canadian trial were presented at a major North American conference (February 2009). Both teaching and non-teaching hospitals demonstrated a decline in the surgical repair rate over the study period, however, only the decrease seen at non-teaching hospitals was found to be significantly associated with the dissemination of landmark trial results (P<0.001). All other predictors of surgical repair utilisation remained unchanged in the before-and-after analysis with the exception of patients 30 years of age and younger having a higher odds of undergoing surgical repair after the trial when compared to those 51 years of age and older. The current study demonstrates that large, well-designed randomised trials, such as the one conducted by Willits et al. can significantly change the practice patterns of orthopaedic surgeons. Moreover, the decline in surgical repair rate observed at both teaching and non-teaching hospitals suggests both academic and non-academic surgeons readily incorporate high quality evidence in to their practice.
The recent emergence of autologous blood concentrates, such as platelet rich plasma (PRP), as a treatment option for patients with orthopaedic injuries has led to an extensive debate about their clinical benefit. Our objective was to determine the effectiveness of autologous blood concentrates compared with control therapy in improving pain in patients with orthopaedic bone and soft tissue injuries. We conducted a systematic review of MEDLINE and EMBASE from 1996 and 1947, respectively, up to July 2010. Additional studies were identified by contacting experts, searching the bibliographies of the included studies as well as orthopaedic meeting archives. We included published and unpublished randomized controlled trials or prospective cohort studies that compared autologous blood concentrates with a control therapy in patients with an orthopaedic injury. Two reviewers, working in duplicate, abstracted data on study characteristics and protocol. Reviewers resolved disagreement by consensus.Purpose
Method