Mechanical alignment (MA) in total knee arthroplasty (TKA), although considered the gold standard, reportedly has up to 25% of patients expressing post-operative dissatisfaction. Biomechanical outcomes following kinematic alignment (KA) in TKA, developed to restore native joint alignment, remain unclear. Without a clear consensus for the optimal alignment strategy during TKA, the purpose of this study was to conduct a paired biomechanical comparison of MA and KA in TKA by experimentally quantifying joint laxity and medial collateral ligament (MCL) strain. 14 bilateral native fresh-frozen cadaveric lower limbs underwent medially-stabilised TKA (GMK Sphere, Medacta, Switzerland) using computed CT-based subject-specific guides, with KA and MA performed on left and right legs, respectively. Each specimen was subjected to sensor-controlled mediolateral laxity tests. A handheld force sensor (Mark-10, USA) was used to generate an abduction-adduction moment of 10Nm at the knee at fixed flexion angles (0°, 30°, 60°, 90°). A digital image correlation system was used to compute the strain on the superficial medial collateral ligament. A six-camera optical motion capture system (Vicon MX+, UK) was used to acquire kinematics using a pre-defined CT-based anatomical coordinate system. A linear mixed model and Tukey's posthoc test were performed to compare native, KA and MA conditions (p<0.05). Unlike MA, medial joint laxity in KA was similar to the native condition; however, no significant difference was found at any flexion angle (p>0.08). Likewise, KA was comparable with the native condition for lateral joint laxity, except at 30°, and no statistical difference was observed. Although joint laxity in MA seemed lower than the native condition, this difference was significant only for 30° flexion (p=0.01). Both KA and MA exhibited smaller MCL strain at 0° and 30°; however, all conditions were similar at 60° and 90°. Medial and lateral joint laxity seemed to have been restored better following KA than MA; however, KA did not outperform MA in MCL strain, especially after mid-flexion. Although this study provides only preliminary indications regarding the optimal alignment strategy to restore native kinematics following TKA, further research in postoperative joint biomechanics for load bearing conditions is warranted.
Dynamic stabilisation system for the spine relies on titanium screw purchase within the pedicle. Decision on osteointegration is important especially when the patient becomes symptomatic following initial good outcome. From our cohort of 420 Dynesys patients, over all incidence of screw loosening was 17%. Only 35% were symptomatic.
Seven observers composed of two expert orthopaedic spine consultant surgeons and one spine expert consultant radiologist and four Specialist Registrars in orthopaedics and radiology. Data gathered were distributed and presented in tables in the form of descriptive statistics. The evaluation of interobserver agreement was performed by obtaining a Kappa (K) index. For continuous variables comparison, the t test was employed, with a significance level of 0.05.
We are planning to evaluate a 3D computer reconstruction model based on 2 X-ray views at 45 degree angle to each other which might be sensitive to detect screw loosening.
Dynamic stabilisation system for the spine relies on titanium screw purchase within the pedicle. Decision on osteointegration is important especially when the patient becomes symptomatic following initial good outcome. From our cohort of 420 Dynesys patients, over all incidence of screw loosening was 17%. Only 35% were symptomatic.
Seven observers composed of two expert orthopaedic spine consultant surgeons and one spine expert consultant radiologist and four Specialist Registrars in orthopaedics and radiology. Data gathered were distributed and presented in tables in the form of descriptive statistics. The evaluation of interobserver agreement was performed by obtaining a Kappa (K) index. For continuous variables comparison, the t test was employed, with a significance level of 0.05.
We are planning to evaluate a 3D computer reconstruction model based on 2 X-ray views at 45 degree angle to each other which might be sensitive to detect screw loosening.