Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 47 - 47
1 Mar 2017
Nakamura T Niki Y Nagai K Sassa T Heldreth M
Full Access

Introduction

Design evolution of total knee arthroplasty (TKA) has improved implant durability and clinical outcomes. However, it has been reported that some patients have limited satisfaction with their operated knees [1].

In view of better patient satisfaction, there have been growing interests in anatomically aligned TKA. The anatomically aligned TKA technique aims to replicate natural joint line of the patients [2][3]. However, restoration of natural joint line may be difficult for the knees with severe deformity, as their joint alignment with respect to bony landmarks at a time of surgery may be critically different from their pre-diseased state.

The purpose of this study is to investigate alignment of the tibial growth plate with respect to tibial anatomical landmarks for possible application in estimation of pre-diseased joint alignment.

Methods

Three-dimensional tibial models were created from CT scans of 22 healthy Japanese knees (M7:F15, Age 31.0±12.6 years) using Mimics (Materialise NV, Leuven, Belgium).

The mid-sagittal plane of the tibia was defined by medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined by following three points; a dwell point of aligned femur on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface defined within sagittal plane that coincide with dwell point of femur on medial tibia. All measurements were made with respect to the mid-sagittal plane.

The shape of the tibial growth plate (GP) was extracted using Livewire function and mask editing tools of Mimics. To determine 3D orientation of the GP, moment of inertia axes were calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 73 - 73
1 May 2016
Nakamura T Niki Y Nagai K Sassa T Heldreth M
Full Access

Introduction

Kinematically or anatomically aligned total knee arthroplasty (TKA) has been reported to provide improved clinical outcomes by replicating patient's original joint line [1][2].

It has been known that tibial (joint line) varus varies among patients, and the tibial varus would increase over progression of arthritis and bone remodeling. For those patients with significant deformity, the current tibial varus may significantly differ from its pre-diseased state.

In this exploratory study, geometry and alignment of the tibial growth plate were measured with respect to tibial anatomical landmarks in order to better understand modes of tibial deformity and seek possible application in reconstructing pre-diseased joint alignment.

Methods

CT scans of sixteen healthy Japanese knees (M6:F10, Age 31.9±13.9 years) were studied. Three-dimensional reconstruction models were created using Mimics 17 (Materialise, Leuven, Belgium). First, a mid-sagittal tibial reference plane, for comparing the varus/valgus orientation of the tibial plateau to that of the growth plate, was defined by the medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined from three points; dwell point of femur (aligned in extension) on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface sampled in the sagittal view and coinciding with dwell point of femur on medial tibia.

Then, a three-dimensional model of the tibial growth plate was extracted using the Livewire function and mask editing tools in Mimics. To determine 3D orientation of the growth plate (GP), the vertical mass moment of inertia axis was calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).