Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 4 - 4
1 May 2012
Simpson D Kendrick B Hughes M Rushforth G Gill H Murray D
Full Access

Introduction

Primary mechanical stability is important with uncemented THR because early migration is reduced, leading to more rapid osseointegration between the implant and bone. Such primary mechanical stability is provided by the design features of the device. The aim of this study was to compare the migration patterns of two uncemented hip stems, the Furlong Active and the Furlong HAC stem; the study was designed as a randomised control trial. The implants were the Furlong HAC, which is an established implant with good long term results, and the Furlong Active, which is a modified version of the Furlong HAC designed to minimise stress concentrations between the implant and bone, and thus to improve fixation.

Materials and methods

The migration of 43 uncemented femoral components for total hip replacement was measured in a randomised control trial using Roentgen Stereophotogrammetric Analysis (RSA) over two years. Twenty-three Furlong HAC and twenty Furlong Active stems were implanted into 43 patients. RSA examinations were carried out post-operatively, and at six months, 12 months and 24 months post-operatively. The patients stood in-front of a purpose made calibration frame which contained accurately positioned radio-opaque markers. From the obtained images, the 3-D positions of the prosthesis and the host bone were reconstructed. Geometrical algorithms were used to identify the components of the implant. These algorithms allowed the femoral component to be studied without the need to attach markers to the prosthesis. The migration was calculated relative to the femoral coordinate system representing the anterior-posterior (A-P), medial-lateral (M-L) and proximal-distal (P-D) directions respectively. Distal migration was termed subsidence.