Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 10 - 10
23 Apr 2024
Stanley C Sheridan GA Paige B Hoellwart JS Reif TJ Fragomen AT Rozbruch SR
Full Access

Introduction

The use of osseointegrated limb replacement prostheses for amputees are rapidly growing in popularity due to the many benefits over conventional sockets. Many institutions worldwide are beginning to provide this surgical option to their patients and are advertising the service online. The aim of this study was to assess the quality and reading level of related information available online.

Materials & Methods

A search was performed using the 3 most popular English language search engines reviewing the top 40 websites from each, using the term osseointegration on. Duplicates, videos, medical journal articles and dentistry websites were excluded. All included websites were assessed for reading using the FKGL, G-Fog and FRE. Quality was assessed using the JAMA benchmark criteria, HONC erificate and a novel 16-point scoring system developed specifically for limb replacement osseointegration.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 143 - 143
1 Apr 2019
Hillstrom R Morgan OJ Rozbruch SR Fragomen AT Ranawat A Hillstrom H
Full Access

Introduction

Osteoarthritis (OA), a painful, debilitating joint disease, often caused by excessive joint stress, is a leading cause of disability (World Health Organisation, 2003) and increases with age and obesity. A 5° varus malalignment increases loading in the medial knee compartment from 70% to 90% (Tetsworth and Paley, 1994). Internal unloading implants, placed subcutaneously upon the medial aspect of the knee joint, are designed to offload the medial compartment of the knee without violating natural joint tissues. The aim of this study is to investigate the effect of an unloading implant, such as the Atlas™ knee system, on stress within the tibiofemoral joint with different grades of cartilage defects.

Methods

To simulate surgical treatment of medial knee OA, a three-dimensional computer-aided design of an Atlas™ knee system was virtually fixed to the medial aspect of a validated finite element knee model (Mootanah, 2014), using CATIA v5 software (Dassault Systèmes, Velizy Villacoublay, France). The construct was meshed and assigned material properties and boundary conditions, using Abaqus finite element software (Dassault Systèmes, Velizy Villacoublay, France). A cartilage defect was simulated by removing elements corresponding to 4.7 mm2. The international cartilage repair society (ICRS) Grade II and III damage were simulated by normalized defect depth of 33% and 67%, respectively. The femur was mechanically grounded and the tibia was subjected to loading conditions corresponding to the stance phase of walking of a healthy 50-year-old 68-Kg male with anthropometrics that matched those of the cadaver. Finite element analyses were run for peak shear and von Mises stress in the medial and lateral tibiofemoral compartments.