To test the hypothesis that: CERAMENT[™]|G (C-G) would improve new bone growth and decrease infection rate after debridement as compared with 1) CERAMENT|BONE VOID FILLER (CBVF) and 2) no void filler in a rat osteomyelitis model. 72 Sprague Dawley rats were injected with 1.5 × 10∧6 CFU of S. aureus into a drill hole in the right tibia. After 3 weeks, the osteomyelitic defect was debrided, and filled with either: 1) C-G (n=32), 2) CBVF (n=20), or 3) nothing (n=20). 6 weeks after the second surgery, 20 rats from each group were sacrificed and the right tibias were harvested. A long-term group (n=12) of C-G treated rats were also sacrificed at 6 months after the second surgery. The tissues were sonicated and the colony forming units in the sonicate were quantified by serial dilutions and culture. MicroCT was used to quantify the new bone growth (BV/TV) in the debrided osteomyelitic void. Histological samples were analyzed for the presence of a neutrophil response by a blinded pathologist. (*: p<0.05) Positive cultures in:
○ 30% of animals treated with CBVF ○ 25% of animals treated with no void filler ○ 0% of animals treated with C-G (*) Neutrophil reaction in:
○ 35% of animals treated with CBVF ○ 50% of animals treated with no void filler ○ 0% of animals treated with C-G (*) The BV/TV in:
○ C-G treated rats was 24% greater than CBVF treated rats (*) ○ C-G treated rats was 94% greater than rats treated with no void filler (*) ○ CBVF treated rats was 56% greater than rats treated with no void filler (*) Animals sacrificed at 6 months which were treated with C-G did not have any evidence of infection by culture or histology. The bone mass of the implanted limb was higher than the contralateral (non-operated) side. CERAMENT|G decreased the rate of infection and increased new bone growth as compared with both CBVF and no void filler in a debrided osteomyelitic environment. Animals treated with C-G at 6 months showed no evidence of infection and retained a higher bone mass relative to the contralateral (non-operated) side. This study supports the use of CERAMENT|G as a readily available void filler which could be used in osteomyelitic environments after debridement.