Total knee arthroplasty (TKA) is a well proven surgical procedure. Squat and gait motions are common activities in daily life. However, squat motion is known as most dissatisfying motion in activities in daily life after total knee arthroplasty (TKA). Dissatisfaction after TKA might refer to muscle co-contraction between quadriceps and hamstrings. The purposed of this study was to develop squat and gait simulation model and analyses the contact mechanics and quadriceps and hamstring muscle stability. We hypothesized that squat model shows larger contact forces and lower hamstring to quadriceps force ratio than gait model. Squat motion and gait model were simulated in musculoskeletal simulation software (AnyBody Modeling System, AnyBody Technology, Denmark). Subject-specific bone models used in the simulation were reconstructed from CT images by Mimics (Materialize, Belgium). The lower extremity model was constructed with pelvis, femur, tibia, foot segments and total knee replacement components: femoral component, tibial insert, tibial tray, and patella component [Fig.1]. The muscle model was consisted of 160 muscle elements. The TKR components used in this study are PS-type LOSPA Primary Knee System (Corentec Co., Ltd, Republic of Korea). Force-dependent kinematics method was used in the simulation. The model was simulated to squat from 15° to 100° knee flexion, in 100 frames. Gait simulation model was based on motion capture and force-plate system. Motion capture and force-plate data were from grand challenge competition dataset.Introduction
Materials and Methods