Severe bone loss creates a challenge for fixation in femoral revision. The goal of the study was to assess reproducibility of fixation and clinical outcomes of femoral revision with bone loss using a modular, fluted, tapered distally fixing stem. 92 consecutive patients (96 hips) underwent hip revision surgery using the same design of a modular, fluted, tapered titanium stem between 1998 and 2005. Fourteen patients with 16 hips died before a 2-year follow-up. Eighty hips were followed for an average of 11.3 years (range of 8 to 13.5 years). Bone loss was classified as per Paprosky's classification, osseointegration assessed according to a modified system of Engh et al, and Harris Hip Score was used to document pain and function. Serial radiographs were reviewed by an independent observer to assess subsidence, osseointegration and bony reconstitution.Introduction:
Methods:
Mechanical integrity of patella can be weakened by the technique of removing the articulating surface. The senior author developed the technique of maintaining subchondral bone of the lateral patellar facet in early 1980s. Though laboratory studies have demonstrated deleterious effect of excessive resection of patella on the strains in the remaining bone under load; clinical studies have not shown the importance of strong subchondral bone of lateral facet to have an effect on patellar fracture prevalence. We present the results of our patellar resection technique preserving the subchondral bone of lateral facet. 393 TKRs were performed between 1989 and 1996 using cruciate substituting modular knee with recessed femoral trochlear groove and congruent patello-femoral articulation. 45 patients with 48 knees died and 37 patients with 41 knees were lost to follow-up. Three hundred and four knees were followed for an average 10 years (range 5 -16 years). Patellar surface was resected with an oscillating saw without the use of cutting guide. The medial facet and most of the articular cartilage of the lateral facet was resected, while preserving the subchondral bone of lateral facet. An all-polyethylene implant with single peg was used in most cases.Introduction
Methods
Studies have documented encouraging results with the use of fluted, tapered, modular, titanium stems in revision hip arthroplasty with bone loss. However, radiographic signs of osseointegration and patterns of reconstitution have not been previously categorized. 64 consecutive hips with index femoral revision using a particular stem of this design formed the study cohort. Serial radiographs were retrospectively reviewed by an independent observer. Bone loss was determined by Paprosky's classification. Osseointegration was assessed by a slight modification of the criteria of Engh et al. Femoral restoration was classified according to Kolstad et al. Pain and function was documented using Harris Hip Score (HHS).Introduction
Materials and Methods
The surgical technique comprised cutting the tibial surface perpendicular to the long axis, ligament balancing in extension followed by femoral component rotation referenced off the proximal tibial cut to produce a rectangular flexion gap. The patella was cut to the level of the lateral facet and tibial component rotation was referenced off the center of the ankle. Lateral release was performed if congruent patello-femoral contact was not attained in knee flexion. Clinical and radiographic review was performed as per Knee Society criteria. Additional radiographic evaluation included patellar displacement, tilt, residual bone thickness and coverage ratio. A patient-administered questionnaire was used to evaluate anterior knee pain and patello-femoral function 1 year after surgery.
The mean linear wear rate in HA group was 0.19mm/yr and in the non-HA group was 0.21mm/yr, which was not significant (p>
0.05). There was no case of osteolysis or aseptic loosening of any component. Both groups had comparable outcomes in terms of HSS scores, walking ability and sports participation.