Fusion represents an effective treatment option in patients affected by end-stage arthritis. To minimise the risk of non-union following fusion, biological preparations such as bone marrow aspirate concentrate (BMAC) are commonly used intra-operatively. Mechanotransduction represents an emerging field of research whereby physical stimuli can be used to modulate the behaviour and differentiation of cells. Blast waves (a subtype of shock waves) are one such physical stimulus. The aim of this study was to investigate whether the osteogenic potential of BMAC can be enhanced using a blast wave, and thus improve its efficacy in fusion surgery. Human BMAC samples were obtained from three healthy patients and exposed to a single blast wave (peak overpressure= 50psi), before being placed in a suspension of mesenchymal stem cells, to represent the biological environment of the fusion site. Three test groups were used: Introduction
Methods
Autologous osteochondral transplantation (AOT) is an effective treatment for large Osteochondral Lesions of the Talus (OLT), however little is reported on an athletic population, who are likely to place higher demands on the reconstruction. The aim is to report the outcomes of large OLT (>150mm2) within an athletic population. The study population was limited to professional or amateur athletes (Tegner score >6) with an OLT of size 150mm2 or greater. The surgical intervention was AOT with a donor site from the lateral femoral condyle. Clinical outcomes at a minimum of 24 months included Return to Sport, VAS and FAOS Scores. In addition, graft incorporation was evaluated by MRI using MOCART scores at 12 months post-surgery. 38 athletes including 11 professional athletes were assessed. Mean follow-up was 46 months. Mean lesion size was 249mm2. 33 patients returned to sport at their previous level and one did not return to sport (mean return to play 8.2 months). Visual analogue scores improved from 4.53 pre-operatively to 0.63 post-operatively (p=0.002). FAOS Scores improved significantly in all domains (p< 0.001). Two patients developed knee donor site pain, and both had three osteochondral plugs harvested. Univariant analysis demonstrated no association between pre-operative patient or lesion characteristics and ability to return to sport. However, there was a strong correlation between MOCART scores and ability to return to sport (AUC=0.89). Our study suggests that AOT is a viable option in the management of large osteochondral talar defects in an athletic population, with favourable return to sport levels, patient satisfaction, and FAOS/VAS scores. The ability to return to sport is predicated upon good graft incorporation and further research is required to optimise this technique. Our data also suggests that patients should be aware of the increased risk of developing knee donor site pain when three osteochondral plugs are harvested.
There has been an evolution recently in the management of unstable
fractures of the ankle with a trend towards direct fixation of a
posterior malleolar fragment. Within these fractures, Haraguchi
type 2 fractures extend medially and often cannot be fixed using
a standard posterolateral approach. Our aim was to describe the
posteromedial approach to address these fractures and to assess
its efficacy and safety. We performed a review of 15 patients with a Haraguchi type 2
posterior malleolar fracture which was fixed using a posteromedial
approach. Five patients underwent initial temporary spanning external
fixation. The outcome was assessed at a median follow-up of 29 months (interquartile
range (IQR) 17 to 36) using the Olerud and Molander score and radiographs were
assessed for the quality of the reduction.Aims
Patients and Methods
Fixation of posterior malleolar fragments associated with ankle fractures aims to stabilise the syndesmosis and prevent posterior subluxation. Haraguchi described 3 types of posterior malleolar fractures, with type 2 being a medial extension injury, these fractures often involve medial and posterior fragments. We describe the techniques and outcomes for a double window posteromedial approach allowing optimal reduction and stabilisation. A retrospective review was performed at 2 units, Bristol Royal Infirmary and QE Hospitals Birmingham, between August 2014 and April 2016. Inclusion criteria were all patients having this posteromedial approach for closed ankle fracture fixation. Patients were assessed for complications and postoperative ankle function with the Olerud and Molander scoring system.Introduction
Methods
Bone tumours of the foot are rare, representing 3–6% of all bone tumours. Of these 15–25% are thought to be malignant. Obtaining clear surgical margins remains an important factor in improving outcome from tumours. However, the anatomical complexity of the foot can lead to an inadequate resection, particularly if the operating surgeon is attempting to preserve function. The aim of this paper is to identify the clinical course of patients suffering from malignant bone tumours of the foot. A prospective tumour registry over a 30 yr period was used to identify patients with a malignant bone tumour of the foot. Patient demographics along with the site of primary malignancy, region of the foot involved and clinical management were recorded.Introduction
Method
The conflict in Afghanistan has been epitomised by the emergence of the Improvised Explosive Device (IEDs). Improvements in protection and medical treatments have resulted in increasing numbers of casualties surviving with complex lower extremity injuries. To date, there has been no analysis of foot and ankle blast injuries as a result of IEDs. Therefore the aims of this study are to report the pattern of injury and determine which factors were associated with a poor clinical outcome. Using a prospective trauma registry, UK Service Personnel who sustained lower leg injuries following an under-vehicle explosion between Jan 2006 and Dec 2008 were identified. Patient demographics, injury severity, the nature of lower limb injury and clinical management was recorded. Clinical endpoints were determined by
need for amputation and need for ongoing clinical output at mean 33.0 months follow-up.Background
Methods