Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal carrier (absorbable collagen sponge) leading to premature release of the protein limit its clinical applications. Our recent study showed an excellent effect on bone regeneration when BMP-2 and zoledronic acid (ZA) were co-delivered based on a calcium sulphate/hydroxyapatite (CaS/HA) scaffold in a rat critical-size femoral defect model. Therefore, the aim of this study was to evaluate whether local application of BMP-2 and ZA released from a CaS/HA scaffold is favorable for spinal fusion. We hypothesized that CaS/HA mediated controlled co-delivery of rhBMP-2 and ZA could show an improved effect in spinal fusion over BMP-2 alone. 120, 8-week-old male Wistar rats (protocol no. 25-5131/474/38) were randomly divided into six groups in this study (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, CaS/HA + BMP-2 + local ZA). A posterolateral spinal fusion at L4 to L5 was performed bilaterally by implanting group-dependent scaffolds. At 3 weeks and 6 weeks, 10 animals per group were euthanized for µCT, histological staining, or mechanical testing. µCT and histological results showed that the CaS/HA + BMP-2 + local ZA group significantly promoted bone regeneration than other treated groups. Biomechanical testing showed breaking force in CaS/HA + BMP + local ZA group was significantly higher than other groups at 6 weeks. In conclusion, the CaS/HA-based biomaterial functionalized with bioactive molecules rhBMP-2 and ZA enhanced bone formation and concomitant spinal fusion outcome
There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Aims
Methods
With promising antibiofilm properties, rifampicin is considered as a cornerstone in the complementary treatment of bone and joint infections. But, achieving an adequate concentration of rifampicin long-term in bone tissue is a challenge. Long-term systemic administration also comes with concomitant side effects. Thus, local delivery of rifampicin in a carrier to ensure the high local concentration of antibiotic in surgical site after intervention due to infection could be a valuable alternative. However, an ideal platform for local delivery of rifampicin is still lacking. A calcium sulphate/hydroxyapatite (CaS/HA) (Cerament, Bonesupport AB, Sweden) biomaterial was used as a local delivery platform. Here we aimed 1) to evaluate the injectability of CaS/HA hand-mixed with rifampicin at various concentrations up to maximum one daily dose used systemically in clinical practice 2) to test a clinically used and commercially available mixing device containing the biphasic ceramic with rifampicin. Three different concentrations (100 mg, 300 mg and 600 mg) of rifampicin powder (Rifampicin Ebb, Sanofi S.P.A, Italy) diluted in 5 mL of mixing solution (C-TRU, Bonesupport AB, Sweden) were used. Rifampicin solution was mixed to the CaS/HA powder and the injectability of the CaS/HA plus rifampicin composite was evaluated by extruding 250 µL of paste manually through a graduated 1 mL syringe connected to an 18G needle (Ø=1.2 mm, L=4 cm). Mixing was done with a spatula for 30 s at 22°C ±1°C. Total weight of the paste before and after extrusion were measured. To normalize the amount of composite that remained in the needle and syringe tip after injection, the mean of the paste extruded from the syringe at 3 min was calculated for the tested concentrations (normalized value). Injectability (%) was calculated by dividing the weight of the paste extruded from the syringe with normalized value. Each test was repeated for three times at various time points (3, 5, 7 and 9 min). Additionally, 300 mg rifampicin was chosen to mix with the CaS/HA in a commercially available mixing system, which is used clinically.Background
Materials & Methods
Bone is a dynamic tissue with a quarter of the trabecular and a fifth of the cortical bone being replaced continuously each year in a complex process that continues throughout an individual’s lifetime. Bone has an important role in homeostasis of minerals with non-stoichiometric hydroxyapatite bone mineral forming the inorganic phase of bone. Due to its crystal structure and chemistry, hydroxyapatite (HA) and related apatites have a remarkable ability to bind molecules. This review article describes the accretion of trace elements in bone mineral giving a historical perspective. Implanted HA particles of synthetic origin have proved to be an efficient recruiting moiety for systemically circulating drugs which can locally biomodulate the material and lead to a therapeutic effect. Bone mineral and apatite however also act as a waste dump for trace elements and drugs, which significantly affects the environment and human health. Cite this article:
During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly
The doses of local rhBMP-2 in commercially available materials are high with known drawbacks such as inflammation and premature bone resorption. The latter can be prevented by adding bisphosphonates like zoledronic acid (ZA) but systemic ZA has side effects and patient adherence to treatment is low. In a recent study, we have shown that local co-delivery of rhBMP-2 and ZA via a calcium sulphate/hydroxyapatite (CS-HA) biomaterial can be used to regenerate both cortical and trabecular bone in a rat model of metaphyseal bone defect. Even low doses of local ZA in the biomaterial showed promising results and increased bone formation within the defect compared to the controls. A step before clinical translation of the local treatment regimen is to evaluate the in-vivo release kinetics of these additives and thus in this study, we aimed to investigate the in-vivo pharmacokinetics of rhBMP-2 and ZA from the CS-HA biomaterial in a rat abdominal muscle pouch model over a period of 4-weeks. In-vivo release kinetics of 125I labeled rhBMP-2 and 14C labeled ZA was performed using an abdominal muscle pouch model in rats (n=6). Both rhBMP-2 and ZA were labeled commercially with a radiochemical purity of >95%. The detection of 125I -rhBMP-2 release was performed by implanting pellets of the CS-HA biomaterial containing 125I -rhBMP-2 and ZA and the same animals followed over a period of 4-weeks (day 1, 3, 7, 14, 21& 28) using SPECT imaging. Similarly, the 14C-ZA was detected by implanting CS-HA pellets containing rhBMP-2 and 14C-ZA. Release was detected via scintillation counting and at each time point (Day 1, 7, 14& 28) 6-animals were sacrificed.Background
Methods
We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.Objectives
Materials and Methods