We compared the risks of re-revision and mortality between two-stage and single-stage revision surgeries among patients with infected primary hip arthroplasty. Patients with a periprosthetic joint infection (PJI) of their primary arthroplasty revised with single-stage or two-stage procedure in England and Wales between 2003 and 2014 were identified from the National Joint Registry. We used Poisson regression with restricted cubic splines to compute hazard ratios (HRs) at different postoperative periods. The total number of revisions and re-revisions undergone by patients was compared between the two strategies. In total, 535 primary hip arthroplasties were revised with single-stage procedure (1,525 person-years) and 1,605 with two-stage procedure (5,885 person-years). All-cause re-revision was higher following single-stage revision, especially in the first three months (HR at 3 months = 1.98 (95% confidence interval (CI) 1.14 to 3.43), p = 0.009). The risks were comparable thereafter. Re-revision for PJI was higher in the first three postoperative months for single-stage revision and waned with time (HR at 3 months = 1.81 (95% CI 1.22 to 2.68), p = 0.003; HR at 6 months = 1.25 (95% CI 0.71 to 2.21), p = 0.441; HR at 12 months = 0.94 (95% CI 0.54 to 1.63), p = 0.819). Patients initially managed with a single-stage revision received fewer revision operations (mean 1.3 (SD 0.7) vs 2.2 (SD 0.6), p < 0.001). Mortality rates were comparable between these two procedures (29/10,000 person-years vs 33/10,000). The risk of unplanned re-revision was lower following two-stage revision, but only in the early postoperative period. The lower overall number of revision procedures associated with a single-stage revision strategy and the equivalent mortality rates to two-stage revision are reassuring. With appropriate counselling, single-stage revision is a viable option for the treatment of hip PJI.
We compared the risks of re-revision and mortality between two-stage and single-stage revision surgeries among patients with infected primary hip arthroplasty. Patients with a periprosthetic joint infection (PJI) of their primary arthroplasty revised with single-stage or two-stage procedure in England and Wales between 2003 and 2014 were identified from the National Joint Registry. We used Poisson regression with restricted cubic splines to compute hazard ratios (HRs) at different postoperative periods. The total number of revisions and re-revisions undergone by patients was compared between the two strategies.Aims
Methods
With increasing burden of revision hip arthroplasty (THA), one of the major challenges is the management of proximal femoral bone loss associated with previous multiple surgeries. Proximal femoral arthroplasty (PFA) has already been popularized for tumour surgeries. Our aim was to describe the outcome of using PFA in these demanding non-neoplastic cases. A retrospective review of 25 patients who underwent PFA for non-neoplastic indications between January 2009 and December 2015 was undertaken. Their clinical and radiological outcome, complication rates, and survival were recorded. All patients had the Stanmore Implant – Modular Endo-prosthetic Tumour System (METS).Aims
Methods
Periprosthetic joint infections (PJIs) are uncommon but are devastating complications of total knee replacement (TKR). We analysed the risk factors of revision for PJI following primary TKR and their association with PJI at different post-operative periods. Primary TKRs and subsequent revision surgeries performed for PJI from 2003–2014 were identified from the National Joint Registry (NJR). Multilevel piece-wise exponential non-proportional hazards models were used to estimate the effect of the investigated factors at different post-operative periods. Patient, perioperative and healthcare system characteristics were investigated and data from the Hospital Episode Statistics for England were linked to obtain information on specific comorbidities. The index TKRs consisted of 679,010 primaries with 3,659 subsequently revised for PJI, 7% within 3 months, 6% between 3–6months, 17% between 6–12months, 27% between 1–2years and 43% ≥2 years from the index procedure. Risk factors for revision for PJI included male sex, high BMI, high ASA grade and young age. Patients with chronic pulmonary disease, diabetes and liver disease had higher risk of revision for PJI, as had patients who had a primary TKR for an indication of trauma or inflammatory arthropathy. Surgical procedure, fixation method, constraint and bearing type influenced the risk of revision for PJI. Their effects were period-specific. No or small associations were found with the operating surgeon grade, surgical volume and hospital surgical volume. These findings from the world's largest joint replacement registry show a more complex picture than the meta-analyses published to date with specific time-dependent effects for the identified risk factors.
Prosthetic joint infection (PJI) is an uncommon but serious complication of hip replacement. A recent systematic review of patient risk factors for PJI identified male gender, smoking status, increasing BMI, steroid use, previous joint surgery and comorbidities of diabetes, rheumatoid arthritis and depression as risk factors for developing PJI. Limitations of the current literature include the short term follow up of most published studies. We investigated the role of patient, surgical and healthcare factors on the risk of revision of a primary hip replacement for PJI at different time-points in the post-operative follow-up. It is important that those risk factors are identified so that patients can be appropriately counselled according to their individual risk profile prior to surgery and modifiable factors can be addressed to reduce the risk of PJI at an individual and healthcare system level. Primary hip replacements and subsequent revision procedures performed for PJI from 2003–2014 were identified from the National Joint Registry (NJR). Patient (age, gender, ASA grade, BMI), perioperative (surgical indication, type of anaesthesia, thromboprophylaxis regime, surgical approach, hip replacement and bearing surface and use of femoral or acetabular bone graft) and healthcare system characteristics (surgeon grade, surgical volume) were linked with data from Hospital Episode Statistics to obtain information on specific ethnicity and comorbidities (derived from the Charlson index). Multilevel piecewise exponential non-proportional hazards models were used to estimate their effects at different post-operative periods (0–3 months, 3–6 months, 6–12 months, 12–24 and >24 months post-operation).Introduction
Materials and Methods
The aim of this study was to determine whether patients with
metal-on-metal (MoM) arthroplasties of the hip have an increased
risk of cardiac failure compared with those with alternative types
of arthroplasties (non-MoM). A linkage study between the National Joint Registry, Hospital
Episodes Statistics and records of the Office for National Statistics
on deaths was undertaken. Patients who underwent elective total
hip arthroplasty between January 2003 and December 2014 with no
past history of cardiac failure were included and stratified as
having either a MoM (n = 53 529) or a non-MoM (n = 482 247) arthroplasty.
The primary outcome measure was the time to an admission to hospital
for cardiac failure or death. Analysis was carried out using data
from all patients and from those matched by propensity score.Aims
Patients and Methods
With increasing burden of revision hip arthroplasty, one of the major challenge is the management of bone loss associated with previous multiple surgeries. Proximal femoral replacement (PFR) has already been popularised for tumour surgeries. The inherent advantages of PFR over allograft –prosthesis system, which is the other option for addressing severe bone loss include, early weight bearing and avoidance of non-union and disease transmission. Our study explores PFR as a possible solution for the management of complex hip revisions. Thirty consecutive hips (29 patients) that underwent PFR between January 2009 and December 2015 were reviewed retrospectively for their clinical and radiological outcomes. The Stanmore METS system was used in all these patients. Mean age at the index surgery (PFR) was 72.69 years (range 50–89) with number of previous hip arthroplasties ranging from 1–5. At mean follow up of 32.27 months, there were no peri-prosthetic fractures and no mechanical failure of the implants. Clearance of infection was achieved in 80% of cases. There was 1 early failure due to intra-operative perforation of femoral canal needing further revision and two were revised for deep infection. Instability was noted in 26.7% (8) of the hips, of which, 87.5% (7) needed further revision with constrained sockets. Out of these 8 hips with instability, 5 had pre-operative infection. Deep infection was noted in 20% (6) of the hips, of which, 5 were primarily revised with PFR for septic loosening. However, further surgeries were essential for only 3 patients. One patient has symptomatic aseptic acetabular loosening and 1 had asymptomatic progressive femoral side loosening (lost to follow up). Severe proximal femoral bone loss in complex revision arthroplasties has necessitated the use of PFR prosthesis. Our study supports the fact that PFR is probably a mechanically viable option for complex revisions. Significant numbers of dislocations and infections could be attributed to the poor soft tissue envelope around the hip. Further surgical techniques in the form use of dual mobility cups and silver coated PFR implants need to be explored.
One of the major concerns of hinge knees have been reported in literature is mechanical failure. Failure in the form of component fracture (2–10%) and hinge dislocation/ failure are worrisome. In addition, higher risk of aseptic loosening with hinge knee prosthesis has been attributed to stress transfer at bone cement interface. Retrospective review of clinical and radiological results of 71 consecutive patients operated at single centre using Smiles hinge knee (Stanmore implants) between 2010 and 2014. Data was collected till the latest follow up. Mechanical failure due to any reason was considered as primary end point. Radiological evidence of aseptic loosening was considered to be one of the surrogate end points.Background
Methods
Prosthetic joint infection (PJI) is an uncommon but serious complication of hip and knee replacement. We investigated the rates of revision surgery for the treatment of PJI following primary and revision hip and knee replacement, explored time trends, and estimated the overall surgical burden created by PJI. We analysed the National Joint Registry for England and Wales for revision hip and knee replacements performed for a diagnosis of PJI and their index procedures from 2003–2014. The index hip replacements consisted of 623,253 primary and 63,222 aseptic revision hip replacements with 7,642 revisions subsequently performed for PJI; for knee replacements the figures were 679,010 primary and 33,920 aseptic revision knee replacements with 8,031 revisions subsequently performed for PJI. Cumulative incidence functions, prevalence rates and the burden of PJI in terms of total procedures performed as a result of PJI were calculated. Revision rates for PJI equated to 43 out of every 10,000 primary hip replacements (2,705/623,253), i.e. 0.43%(95%CI 0.42–0.45), subsequently being revised due to PJI. Around 158 out of every 10,000 aseptic revision hip replacements performed were subsequently revised for PJI (997/63,222), i.e. 1.58%(1.48–1.67). For knees, the respective rates were 0.54%(0.52–0.56) for primary replacements, i.e. 54 out of every 10,000 primary replacements performed (3,659/679,010) and 2.11%(1.96–2.23) for aseptic revision replacements, i.e. 211 out of every 10,000 aseptic revision replacements performed (717/33,920). Between 2005 and 2013, the risk of revision for PJI in the 3 months following primary hip replacement rose by 2.29 fold (1.28–4.08) and after aseptic revision by 3.00 fold (1.06–8.51); for knees, it rose by 2.46 fold (1.15–5.25) after primary replacement and 7.47 fold (1.00–56.12) after aseptic revision. The rates of revision for PJI performed at any time beyond 3 months from the index surgery remained stable or decreased over time. From a patient perspective, after accounting for the competing risk of revision for an aseptic indication and death, the 10-year cumulative incidence of revision hip replacement for PJI was 0.62%(95%CI 0.59–0.65) following primary and 2.25%(2.08–2.43) following aseptic revision; for knees, the figures were 0.75%(0.72–0.78) following primary replacement and 3.13%(2.81–3.49) following aseptic revision. At a health service level, the absolute number of procedures performed as a consequence of hip PJI increased from 387 in 2005 to 1,013 in 2014, i.e. a relative increase of 2.6 fold. While 70% of those revisions were two-stage, the use of single stage revision increased from 17.6% in 2005 to 38.5% in 2014. For knees, the burden of PJI increased by 2.8 fold between 2005 and 2014. Overall, 74% of revisions were two-stage with an increase in use of single stage from 10.0% in 2005 to 29.0% in 2014. Although the risk of revision due to PJI following hip or knee replacement is low, it is rising. Given the burden and costs associated with performing revision joint replacement for prosthetic joint infection and the predicted increased incidence of both primary and revision hip replacement, this has substantial implications for service delivery.
Distal femoral replacement is an operation long considered as salvage operation for neoplastic conditions. Outcomes of this procedure for difficult knee revisions with bone loss of distal femur have been sparsely reported. We present the early results of complex revision knee arthroplasty using distal femoral replacement implant, performed for severe osteolysis and bone loss. Retrospective review of clinic and radiological results of 25 consecutive patients operated at single centre between January 2010 and December 2014. All patients had single type of implant. All data was collected till the latest follow up. Re-revision for any reason was considered as primary end point. Mean age at surgery was 72.2 years (range 51 – 85 years). Average number of previous knee replacements was 2.28 (range 1 to 6). Most common indications were infection, aseptic loosening and peri-prosthetic fracture. Average follow up was 24.5 months (range: 3–63 months). 1 patient died 8 months post-op due to unrelated reasons. Re-revision rate was 2/25 (8%) during this period. One was re-revised for aseptic loosening and one was revised for peri-prosthetic fracture of femur. Two other peri-prosthetic fractures were managed by open reduction and internal fixation. All 3 peri-prosthetic fractures occurred with low energy trauma. It is noteworthy that there was no hinge or mechanical failures of the implant. Peri-prosthetic fracture in 12% of patients in this series is of concern. There are no similar studies to compare this data with. The length of the stem, type of fixation of the stem, weight of the distal femoral component of implant can be postulated as factors contributing to risk of peri-prosthetic fracture.
A recent paper suggested implanting an uncemented acetabular shell which is 6mm or greater than the native femoral head in total hip arthroplasty (THA) significantly increased the risk of postoperative pain. We retrospectively analyzed 265 Delta ceramic-on-ceramic (DCoC) THA comparing the native femoral head size to the implanted shell and reviewing if the patient suffered with post-operative pain (POP). 265 consecutive THAs were performed using the Corail and Pinnacle prostheses with DCoC bearing. Native femoral head size was calculated retrospectively on pre-operative radiographs using TraumaCad software. All patients were sent questionnaires requesting information on satisfaction, sounds, postoperative pain and complications. Statistical analysis was then undertaken on the data.Introduction
Methods
Current analysis of unicondylar knee replacements (UKR) by national registries is based on the pooled results of medial and lateral implants. Using data from the National Joint Registry for England and Wales (NJR) we aimed to determine the proportion of lateral UKR implanted, their survival and reason for failure in comparison to medial UKR. By combining information on the side of operation with component details held on the NJR we were able to determine implant laterality (medial vs. lateral) for 32,847 of the 35,624 (92%) UKR registered before December 2010. Kaplan Meier plots, Life tables and Cox' proportion hazards were used to compare the risk of failure for lateral and medial UKRs after adjustment for patient and implant covariates.Background
Methods
Following in-depth analysis of the market leading brand combinations in which we identified implant influences on risk of revision, we compared revision in patients implanted with different categories of hip replacement in order to find implant with the lowest revision risk, once known flawed options were removed. All patients with osteoarthritis who underwent a hip replacement (2003–2010) using an Exeter-Contemporary (cemented), Corail-Pinnacle (cementless), Exeter-Trident (Hybrid) or a Birmingham Hip resurfacing (BHR) were initially included within the analysis. Operations involving factors that were significant predictors of revision were excluded. Cox proportional hazard models were then used to assess the relative risk of revision for a category of implant (compared with cemented), after adjustment for patient covariates.Introduction
Methods
Current analysis of unicondylar knee replacements
(UKRs) by national registries is based on the pooled results of medial
and lateral implants. Consequently, little is known about the differential
performance of medial and lateral replacements and the influence
of each implant type within these pooled analyses. Using data from
the National Joint Registry for England and Wales (NJR) we aimed
to determine the proportion of UKRs implanted on the lateral side
of the knee, and their survival and reason for failure compared
with medial UKRs. By combining information on the side of operation
with component details held on the NJR, we were able to determine
implant laterality (medial
We aim to assess the functional outcome, patient perceived satisfaction and implant survival at a mean follow up of 13[10–16] years following revision knee replacement. Between 1995 and 2001, 243 revision knee replacements were performed in 230 patients using Endolink [Link, Hamburg] or TC3 [Depuy, Leeds] prosthesis at Wrightington hospital, Wrightington, were consented to take part in this study. Data was collected prospectively which includes complications and functional assessment by Oxford knee score, WOMAC, HSS, UCLA, SF12 scores, and patient satisfaction questioner. The scores were obtained pre-operatively and post-operatively at 1 year, 5 years and at the latest follow-up. The mean age was 69 yrs, 51% were males, TC3 prosthesis as used in 175 and Endolink in 68, the revision was for Infection in 71[29%], 53 patients had intra-operative positive culture, 35 had 2 stage revision.Introduction
Patients and Methods
We aim to assess the functional outcome, patient satisfaction and implant survival at a mean follow up of 13[10–16] years following revision for infected total knee replacement. Between 1995 and 2001, 71 revision knee replacements were performed for infection, at Wrightington hospital, Wrightington. Data was collected prospectively which includes intra-operative cultures, complications and functional assessment by Oxford knee score, WOMAC, HSS, UCLA, SF12 scores, and patient satisfaction questioner. The scores were obtained pre-operatively and post-operatively at 1 year, 5 years and at the latest follow-up. Mean age was 69 yrs, 70% were Females, 31[44%] had 2 stage revisions and intra-operative culture was positive in 53 patients. Most common organism was staphylococcus aureus in 30% and staphylococcus epidermides in 18%.Introduction
Patients and Methods
We report a prospective study of clinical data collected pre, intra and post operation to remove both cup and head components of 118 failed, current generation metal on metal (MOM) hips. Whilst component position was important, the majority were unexplained failures and of these the majority (63%) had cup inclination angles of less than 55 degrees. Poor biocompatibility of the wear debris may explain many of the failures. Morlock et al reported a retrospective analysis of 267 MOM hips but only 34 head and cup couples (ie most were femoral neck fractures) and without data necessary to define cause of failure. The commonest cause of failure in the National Joint Registry (NJR) is unexplained.SUMMARY
BACKGROUND
We have assessed the bone cuts achieved at surgery compared to the planned cuts produced during computer assisted surgery (CAS) using a CT free navigation system. In addition, two groups of matched patients were compared to assess the post-operative mechanical alignment achieved: 14 patients received a LCS total knee replacement (TKR) using the VectorVision module and 14 received a TKR using a conventional method of extramedullary alignment jigs The deviation in each plane (valgus-varus, flexion-extension and proximal-distal) was calculated. For the tibia the mean deviation in the coronal plane was 0.21 degrees of Varus (SD = 1.37) and in the sagittal plane was 1.29 degrees of flexion (SD = 3.73) and 0.24 mm of resection distal to the anticipated cut (SD = 2.14). For the femur the mean deviation in the coronal plane was 0.88 degrees (SD = 2.2) of valgus and in the sagittal plane the mean deviation was 0.3 degrees (SD = 2.91) of extension. In the transverse plane there was a mean deviation of 0.07 degrees (SD = 1.57) of external rotation. There was mean deviation of 2.33 mm of proximal resection (SD = 2.9) and 1.05 mm of anterior shift (SD = 2.81). On comparing the two groups, no statistically significant differences were found for the angles between the femoral component and the femoral mechanical axis, the tibial component and the tibial mechanical axis, the femoral and tibial mechanical axis and the femoral and tibial anatomical axis. We have demonstrated variation in the true bone cuts obtained using computer assisted surgery from those suggested by the software and have not demonstrated significant improvement in post-operative alignment. Justification for the extra cost, time and morbidity associated with this technology must be provided in the form of improved clinical outcomes in the future.
Wear measurements of 100 explanted hips have been carried out on a Taylor Hobson 365 Roundness Machine using the LIRC Wear Protocol. It was found that 50% of explanted cups were wearing less than 5 μm/year and 60% of components were wearing less than 10 μm/year. Wear tests on hip joint simulators predict wear rates between 2 and 8 μm/year. However, 6% of cups are wearing faster than 100 μm/year, with 16% of cups have wear patches deeper than 100 μm and that 4% have a wear patch deeper than 300 μm.
Cup position is an important factor, all of the high wearing components are outside the Lewinick’s Box, however it is shown that mal position is does not always lead to extreme wear. Further analysis is taking place to calculate the size of the contact patch between head and cup (based on patient data and biomechanics) and the proximity of the contact patch to the edge of the cup.