Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 368 - 368
1 Oct 2006
Gill H Polgar K Glyn-Jones S McLardy-Smith P Murray D
Full Access

Introduction: The design philosophy of polished tapered THR stems, such as the Exeter, intend for them to migrate distally within the cement mantle. In addition it is likely that micromotion occurs as a result of functional activity. The pattern of induced stresses will be a function of stem geometry & surface finish, as well as applied loading. Aim: To investigate the stresses induced in the cement mantle of a polished tapered THR stem during functional activity.

Method: Using Roentgen Stereophotogrammetric Analysis (RSA) dynamically induced micro-motion (DIMM) was measured in 21 patients implanted with Exeter stems. DIMM was measured as the difference in stem position in going from double to single leg stance on the operated limb. All subjects were measured 3 months post-operatively. A finite element (FE) model of the femur, including all muscles was used to investigate the stress distribution within the cement; contact was modelled with sliding elements allowing separation. The model was validated by comparison to the DIMM measurements.

Results: The Exeter stem demonstrated significant DIMM(p < 0.017), the average motions are given in the table below. The FE model, with sliding contacts was able to predict similar distal migration of the head. The peak minimum principal stress in the mantle was approx 33MPa and occurred in the proximal medial region. Movements occurred at the stem/cement interface.

Discussion and Conclusion: It is possible to measure DIMM in the Exeter stem and combining this with FE modelling the mechanism of stress transfer between the stem and mantle can be investigated in a manner that can be validated.