Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 76 - 76
11 Apr 2023
Petersen E Rytter S Koppens D Dalsgaard J Bæk Hansen T Larsen NE Andersen M Stilling M
Full Access

In an attempt to alleviate symptoms of the disease, patients with knee osteoarthrosis (KOA) frequently alter their gait patterns. Understanding the underlying pathomechanics and identifying KOA phenotypes is essential for improving treatments. We aimed to investigate altered kinematics in patients with KOA to identify subgroups.

Sixty-six patients with symptomatic KOA scheduled for total knee arthroplasty and 12 age-matched healthy volunteers with asymptomatic knees were included. We used k-means to separate the patients based on dynamic radiostereometric assessed knee kinematics. Ligament lesions, KOA score, and clinical outcome were assessed by magnetic resonance imaging, radiographs, and patient reported outcome measures, respectively.

We identified four clusters that were supported by clinical characteristics. Compared with the healthy group; The flexion group (n=20): revealed increased flexion, greater adduction, and joint narrowing and consisted primarily of patients with medial KOA. The abduction group (n=17): revealed greater abduction, joint narrowing and included primarily patients with lateral KOA. The anterior draw group (n=10): revealed greater anterior draw, external tibial rotation, lateral tibial shift, adduction, and joint narrowing. This group was composed of patients with medial KOA, some degree of anterior cruciate ligament lesion and the greatest KOA score. The external rotation group (n=19): revealed greater external tibial rotation, lateral tibial shift, adduction, and joint narrowing while no anterior draw was observed. This group included primarily patients with medial collateral and posterior cruciate ligament lesions.

Patients with KOA can, based on their gait patterns, be classified into four subgroups, which relate to their clinical characteristics. The findings add to our understanding of associations between disease pathology characteristics in the knee and the pathomechanics in patients with KOA. A next step is to investigate if patients in the pathomechanic clusters have different outcomes following total knee arthroplasty.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 78 - 78
11 Apr 2023
Vind T Petersen E Lindgren L Sørensen O Stilling M
Full Access

The Pivot-shift test is a clinical test for knee instability for patinets with Anterior cruciate ligament (ACL), however the test has low inter-observer reliability. Dynamic radiostereometry (dRSA) imaging is a highly precise method for objective evaluation of joint kinematics. The purpose of the study was to quantify precise knee kinematics during Pivot-shift test by use of the non-invasive dynamic RSA imaging.

Eight human donor legs with hemipelvis were evaluated. Ligament lesion intervention of the ACL was performed during arthroscopy and anterolateral ligament (ALL) section was performed as a capsular incision. Pivot-shift test examination was recorded with dRSA on ligament intact knees, ACL-deficient knees and ACL+ALL-deficient knees.

A Pivot-shift pattern was identifyable after ligament lesion as a change in tibial posterior drawer velocity from 7.8 mm/s in ligament intact knees, to 30.4 mm/s after ACL lesion, to 35.1 mm/s after combined ACL-ALL lesion. The anterior-posterior drawer excursion increased from 2.8 mm in ligament intact knees, to 7.2 mm after ACL lesion, to 7.6 mm after combined lesion. Furthermore a change in tibial rotation was found, with increasing external rotation at the end of the pivot-shift motion going from intact to ACL+ALL-deficient knees

This experimental study demonstrates the feasibility of RSA to objectively quantify the kinematic instability patterns of the knee during the Pivot-shift test. The dynamic parameters found through RSA displayed the kinematic changes from ACL to combined ACL-ALL ligament lesion.