header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 18 - 18
1 Jan 2017
Palanca M Cristofolini L Pani M Kinene E Blunn G Madi K Tozzi G
Full Access

DVC allowed measurements of displacement and strain distribution in bone through the comparison of two, or more, 3D images. Hence, it has a potential as a diagnostic tool in combination with clinical CT. Currently, traditional computed tomography (CT) allows for a detailed 3D analysis of hard tissues, but imaging in a weight-bearing condition is still limited. PedCAT-CT (Curvebeam, USA) emerged as a novel technology allowing, for the first time, 3D imaging under full-weight bearing (Richter, Zech et al. 2015). Specifically, a PedCAT-CT based DVC was employed to establish its reliability through the strain uncertainties produced on bone structure targets, preliminarily to any further clinical studies. In addition, a reverse engineering FE modeling was used to predict possible force associated to displacement errors from DVC.

Three porcine thoracic vertebrae were used as bone benchmark for the DVC (Palanca, Tozzi et al. 2016, Tozzi, Dall'Ara et al. 2016). The choice of using porcine vertebrae (in a CT designed for foot/ankle) was driven by availability, as well as similar dimensions to the calcaneus. Each vertebra was immersed in saline solution and scanned twice without any repositioning (zero-strain-test) with a pedCAT-CT (Curvebeam, USA) obtaining an isotropic voxel size of 370 micrometers. Volumes of interest of 35 voxel were cropped inside the vertebrae. Displacement and strains were evaluated using DVC (DaVis-DC, LaVision, Germany), with different spatial resolution. The displacement maps were used to predict the force uncertainties via FE (Ansys Mechanical v.14, Ansys Inc, Canonsburg, PA). Each element was assigned a linear elastic isotropic constitutive law (Young modulus: 8 GPa, Poisson's ratio: 0.3, as in (Follet, Peyrin et al. 2007)). Overall, the precision error of strain measurement was evaluated as the average of the standard deviation of the absolute value of the different component of strain (Liu and Morgan 2007).

The force uncertainties obtained with the FE analysis produced magnitudes ranging from 231 to 2376 N. No clear trend on the force was observed in relation to the spatial resolution. Precision errors were smaller than 1000 microstrain in all cases, with the lowest ranging from 83 microstrain for the largest spatial resolution. Full-field strain on the bone tissue did not seem to highlight a preferential distribution of error in the volume.

The precision errors showed that the pedCAT-CT based DVC can be sufficient to investigate the bone tissue failure (7000–10000 microstrain) or, physiological deformation if well-optimized. FE analysis produced important force uncertainties up to 2376 N. However, this is a preliminary investigation. Further investigation will give a clearer indication on DVC based PedCAT-CT, as well as force uncertainties predicted. So far, the DVC showed its ability to measure displacement and strain with reasonable reliability with clinical-CT as well.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 32 - 32
1 Jan 2017
Curto M Pani M Tozzi G Barber A Parwani R
Full Access

The human musculoskeletal system is a biological composite of hard and soft material phases organized into a complex 3D structure. The replication of mechanical properties in 3-dimensional space, so called ‘4D’ techniques, therefore promises next-generation of prosthetics and engineering structures for the musculoskeletal system. Approaches using in situ indentation of tissue correlated with micro computed tomography (μCT) are used here to provide a 4D data set that is representative of the native tissue at high fidelity. Multi-material 3D printing is exploited to realize the collected 4D data set by using materials with a wide range of mechanical properties and printing structures representative of native tissue. We demonstrate this correlative approach to reproduce bone structures and highlight a workflow approach of indentation, μCT and 3D printing to potentially mimic any structure found in the musculoskeletal system.

Structures in the human musculoskeletal system, such as bone [1] and tendon-bone connective tissue [2], can be considered as complex composites of hard and soft materials. Development of prosthetics capable of replacing body parts lost to trauma, disease or congenital conditions requires the accurate replication of the required body part. 3D printing promises considerable advantages over other manufacturing methods in mimicking native tissue, including the ability to produce complex structures [3]. However, accurate representation of whole body parts down to tissue microstructures requires correlative approaches where mechanical properties in 3-dimensional space are known. The objective of this study is to apply in situ indentation, correlate to 3D imaging of bone using μCT and finally 3D print mimicked structures.

Samples of bovine compact bone were imaged at high resolution using μCT (Xradia Versa 510, Zeiss, USA). A custom build in situ micro indentation setup within the μCT was used to map the mechanical properties of the bone at multiple positions. Correlation between sample x-ray attenuation and corresponding elastic modulus found from indentation was established. Data was converted to a 4D data set of elastic modulus values in 3D space, segmented and exported to the 3D printer. An inkjet 3D printer (Projet 5500X, 3D Systems, USA) was used to print materials with a range of mechanical properties that approach those found in the native bone material. Macroscopic testing on both bone samples and 3D printed samples were carried out using standard compression (Instron, UK).

Preliminary results indicated similarity between 3D printed structures and native bone tissue. Macroscopic testing of bone samples and 3D printed equivalents showed additional similarities in stress-strain behaviour.

Our preliminary work presented here indicates that the workflow of 3D imaging correlated to point mechanical measurements using indentation is suitable to give a 4D dataset that is representative of the native bone tissue. 3D printing is able to produce structures that start to mimick bone but are critically dependent on the data segmentation, particularly averaging imaging data to a resolution that is appropriate for the 3D printer.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 34 - 34
1 Jan 2017
Peña Fernández M Pani M Barber A Tozzi G
Full Access

3D printing can be used for the regeneration of complex tissues with intricate 3D microarchitecture. Trabecular bone is a complex and porous structure with a high degree of anisotropy. Changes in bone microarchitecture are associated with pathologies such as osteoporosis [1]. The objective of this study is to determine the viability of using 3D printing to replicate trabecular bone structures with a good control over the microarchitecture and mechanical properties.

Cylindrical samples of bovine trabecular bone were used in this study. Micro-computed tomography (microCT) was carried out and an isotropic voxel size of 22 µm was obtained (Xradia Versa 520, Zeiss, USA). After 3D reconstruction the main microstructure characteristics were analysed using ImageJ (NIH, US).

The 3D printed bone replicas were created by segmenting the microCT imaged bone tissue and then converted into a STL file using Avizo (FEI, US). The 3D printer used for this study was the ProJet 5500X (3D Systems, US), which allows a number of different materials to be printed in the same built with a resolution of 25 µm. Preliminary results were obtained using one single material (VisiJet CR-WT, Tensile Modulus: 1–1.6 GPa, Tensile Strength: 37–47 MPa). The 3D printed bone replicas followed a critical cleaning step to remove any remaining support material in the pores. MicroCT was then carried out for the bone replicas obtaining the same isotropic voxel size as for their biological counterparts. ImageJ was used to obtain the main microstructure characteristics.

The values of bone volume fraction (BV/TV), mean trabecular thickness (Tb.Th), mean trabecular spacing (Tb.Sp), and degree of anisotropy (DA) were measured for bone samples and their 3D printed replicas [2].

Preliminary results on the first bone sample with its 3D printed replica showed similar apparent trabecular structures. Their respective BV/TV was found to be 0.24 (bone) and 0.43 (replica). The Tb.Th and Tb.Sp were 0.222 mm and 0.750 mm respectively for the bone and 0.376 mm and 0.575 mm for the replica. Finally, their respective DA was found to be 0.68 (bone) and 0.66 (replica).

The main microstructure characteristics analyzed showed some differences between the bone sample and the 3D printed replica. In particular, the 3D microstructures resulted over-dimensioned mainly due to factors such as microCT voxel size, resolution of the 3D printer and supporting material removal. However this is a preliminary investigation. Further analysis will focus on optimizing the microCT imaging as well as the 3D printing process to achieve more accurate bone replicas. In addition, multi-material printing will be employed to optimize some of the mechanical properties obtained through in situ microCT testing and FE subject-specific modelling.