The aim of this study was to assess the association of mortality and reoperation when comparing cemented and uncemented hemiarthroplasty (HA) in hip fracture patients aged over 65 years. This was a population-based cohort study on hip fracture patients using prospectively gathered data from several national registries in Denmark from 2004 to 2015 with up to five years follow-up. The primary outcome was mortality and the secondary outcome was reoperation. Hazard ratios (HRs) for mortality and subdistributional hazard ratios (sHRs) for reoperations are shown with 95% confidence intervals (CIs).Aims
Methods
To assess the safety of tranexamic acid (TXA) in a large cohort of patients aged over 65 years who have sustained a hip fracture, with a focus on transfusion rates, mortality, and thromboembolic events. This is a consecutive cohort study with prospectively collected registry data. Patients with a hip fracture in the Region of Southern Denmark were included over a two-year time period (2015 to 2017) with the first year constituting a control group. In the second year, perioperative TXA was introduced as an intervention. Outcome was transfusion frequency, 30-day and 90-day mortality, and thromboembolic events. The latter was defined as any diagnosis or death due to arterial or venous thrombosis. The results are presented as relative risk (RR) and hazard ratio (HR) with 95% confidence intervals (CIs).Aims
Methods
Total leg muscle function in hip OA patients is not well studied. We used a test-retest protocol to evaluate the reproducibility of single- and multi-joint peak muscle torque and rapid torque development in a group of 40–65 yr old hip patients. Both peak torque and torque development are outcome measures associated with functional performance during activities of daily living. Patients: Twenty patients (age 55.5±3.3, BMI 27.6±4.8) who underwent total hip arthroplasty participated in this study. Reliability: We used the intra-class correlation (ICC) and within subject coefficients of variation (CVws) to evaluate reliability. Agreement: Relative Bland-Altman 95% limits of agreements (LOA) and smallest detectable difference (SDD) were calculated and used for evaluation of measurement accuracy. Parameters: Maximal muscle strength (peak torque, Nm) and rate of torque development (Nm•sec-1) for affected (AF) and non-affected (NA) side were measured during unilateral knee extension-flexion (seated), hip extension-flexion, and hip adduction-abduction (standing), respectively. Contractile RTD100, 200, peak was derived as the average slope of the torque-time curve (torque/time) at 0–100, 0–200 and 0 peak relative to onset of contraction. Protocol: After 5 min level walking at self-selected and maximum speeds each muscle group was tested using 1–2 sub-maximal contraction efforts followed by 3 maximal contractions 4s duration. Statistics: The variance components were estimated using STATA12, with muscle function and occasion as independent variable and patients as random factor, using the restricted maximum likelihood method (=0.05).Introduction
Material and Methods
Metal on metal articulations produce chromium (Cr) and cobalt (Co) debris, particularly when the articulations are worn in. High levels in the peripheral blood are indicative of excess wear and may cause adverse effects. The present RCT investigates metal ion levels and the relationship of Co, Cr ions and lymphocyte counts during the running-in period. Following randomization to RHA (ASRTM, DePuy) or THA we obtained whole blood (wb), and serum (s) samples at baseline, 8 w, 6 m and 1 y. We measured the Co and Cr concentrations, the total lymphocyte count as well as the CD3+, CD4+, CD8+, CD19+ and CD16+/CD56+ sub populations. Cup inclination and anteversion angles came from conventional radiographs. Activity was measured as steps by pedometer and UCLA activity. Data are presented as median (range).Introduction
Materials and Methods
The treatment of femoral neck fracture with internal fixation (IF) is recommended in younger patients and has compared to arthroplasty the advantage of retaining the femoral head. A big problem with osteosynthesis is though failure. Finding predictors for fixation failure is still an ongoing process and osteoporosis has been suggested as a predictor. To correlate bone mineral density (BMD) in regard to failure of IF in osteosynthesized femoral neck fractures.Background
Aim
The combined incubation of a composite scaffold with bone marrow stromal cells in a perfusion bioreactor could make up a novel hybrid graft material with optimal properties for early fixation of implant to bone. The aim of this study was to create a bioreactor activated graft (BAG) material, which could induce early implant fixation similar to that of allograft. Two porous scaffold materials incubated with cells in a perfusion bioreactor were tested in this study. Two groups of 8 skeletally mature female sheep were anaesthetized before aspiration of bone marrow from the iliac crest. For both groups, mononuclear cells were isolated, and injected into a perfusion bioreactor (Millenium Biologix AG, Switzerland). Scaffold granules Ø∼900–1500 μm, ∼88% porosity) in group 1, consisted of hydroxyapatite (HA, 70%) with -tricalcium-phosphate (−TCP, 30%) (Danish Technological Institute, Denmark). The granules were coated with poly-lactic acid (PLA) 12%, in order to increase the mechanical strength of the material (Phusis, France). Scaffold granules Ø∼900–1400 μm, 80% porosity) in group 2 consisted of pure HA/-TCP (Fin Ceramica, Italy). For both groups, cells were incubated in the bioreactor for 2 weeks. Fresh culture medium supplemented with dexamethasone and ascorbic-acid was added every third or fourth day. Porous titanium alloy implants with diameter=length=10mm (Biomet, USA) were inserted bilaterally in each of the distal femurs of the sheep; thus 4 implants in each sheep. The concentric gap (2 mm) surrounding the implant was filled with 1) BAG (autogenous), 2) granules, 3) granules+bone marrow aspirate (BMA, autologous) or 4) allograft. The sheep were euthanized after 6 weeks. Distal femurs were removed and implant-bone samples were divided in two parts. The superficial part was used for mechanical testing and micro-CT scanning, and the profound part for histomorphometry. Push-out tests were performed on an 858 Bionix MTS hydraulic materials testing machine. Shear mechanical properties between implant and newly generated bone were calculated to assess implant fixation. Results were assessed by One-way ANOVA. P-values less than 0.05 were considered significant.Introduction
Methods and Materials
Osteoporosis (OP), osteoarthrosis (OA), and rheumatoid arthritis (RA) are the most common age-related degenerative bone diseases, and major public health problems in terms of enormous amount of economic cost. RA is considered as a major cause of secondary osteoporosis. At late stage, OP often leads to skeletal fractures, and OA and RA result in severe joint disability. Over the last a few decades, much significant research on the properties has been carried out on these diseases, however, a detailed comparison of the microarchitecture of cancellous bones of these diseases is not available. In this study, we investigated three-dimensional (3-D) microarchitectural properties of OP, OA and RA cancellous bone. We hypothesized that there were significant differences in microarchitecture among OP, OA and RA bone tissues that might lead to different bone quality. Twenty OP, fifty OA, and twelve RA femur heads were harvested from patients undergone total hip replacement surgery. Cubic cancellous bone samples (8∗8∗8 mm3) were prepared and scanned with a high resolution microtomographic system (vivaCT 40, Scanco Medical AG., Brüttisellen, Switzerland). Then micro-CT images were segmented using individual thresholds to obtain accurate 3-D data sets. Detailed microarchitectural properties were evaluated based on novel unbiased, model-free 3-D methods. For statistical analysis, one-way ANOVA was used, and a p<0.05 was considered significant.Introduction
Materials and Method