The primary outcome was investigating differences in wear, as measured by femoral head penetration, between cross-linked vitamin E-diffused polyethylene (vE-PE) and cross-linked polyethylene (XLPE) acetabular component liners and between 32 and 36 mm head sizes at the ten-year follow-up. Secondary outcomes included acetabular component migration and patient-reported outcome measures (PROMs) such as the EuroQol five-dimension questionnaire, 36-Item Short-Form Health Survey, Harris Hip Score, and University of California, Los Angeles Activity Scale (UCLA). A single-blinded, multi-arm, 2 × 2 factorial randomized controlled trial was undertaken. Patients were recruited between May 2009 and April 2011. Radiostereometric analyses (RSAs) were performed from baseline to ten years. Of the 220 eligible patients, 116 underwent randomization, and 82 remained at the ten-year follow-up. Eligible patients were randomized into one of four interventions: vE-PE acetabular liner with either 32 or 36 mm femoral head, and XLPE acetabular liner with either 32 or 36 mm femoral head. Parameters were otherwise identical except for acetabular liner material and femoral head size.Aims
Methods
The aim of this study was to examine whether socioeconomic status (SES) is associated with a higher risk of infections following total hip arthroplasty (THA) at 30 and 90 days. We obtained individual-based information on SES markers (cohabitation, education, income, and savings) on 103,901 THA patients from Danish health registries between 1 January 1995 and 31 December 2017. The primary outcome measure was any hospital-treated infection (i.e. all infections). The secondary outcomes were further specified to specific hospital-treated infections (pneumonia, urinary tract infection, and periprosthetic joint infection). The primary timepoint was within 90 days. In addition, the outcomes were further evaluated within 30 days. We calculated the cumulative incidence, and used the pseudo-observation method and generalized linear regression to estimate adjusted risk ratios (RRs) with 95% confidence intervals (CIs) for each marker.Aims
Methods
Young patients are at increased risk of revision after primary THA (THA). The bearing surface may be of importance for the longevity of the joint. We aimed to compare the risk of revision of primary stemmed cementless THA with MoM and CoC with metal-on-highly-crosslinked-polyethylene (MoXLP) bearings in patients between 20–54 years. From NARA, we included 2,153 MoM, 4,120 CoC and 10,329 MoXLP THA operated between 1995 and 2017. Kaplan-Meier estimator was used for calculation of THA survivorship and Cox regression to estimate the hazard ratio (HR) of revision (95% CI) due to any and specific causes. MoXLP was reference. The median follow-up was 10.3 years for MoM, 6.6 years for CoC and 4.8 years for MoXLP. 15 years postoperatively the Kaplan-Meier survival estimates were 80% (78–83%) for MoM, 92% (91–93%) for CoC and 94% (93–95%) for MoXLP. The 0–2, 2–7 and 7–15 years adjusted HRs of revision by any cause were 1.4 (0.9–2.4), 3.2 (2.1–5.1) and 3.9 (1.9–7.9) for MoM and 1.1 (0.8–1.4), 1.0 (0.7–1.3) and 2.5 (1.3–4.8) for CoC bearings. After 7–15 years follow-up, the unadjusted HR of revision due to aseptic loosening was 5.4 (1.2–24) for MoM and 4.2 (0.9–20) for CoC THA. MoM and CoC had a 7–15 year adjusted HR of revision due to ‘other’ causes of 4.8 (1.6–14) and 2.1 (0.8–5.8). MoXLP bearings were associated with better survival than MoM and CoC bearings, mainly because of lower risk of revision due to aseptic loosening and ‘other’ causes.
The most frequent indication for revision surgery in total hip arthroplasty (THA) is aseptic loosening. Aseptic loosening is associated with polyethylene liner wear, and wear may be reduced by using vitamin E-doped liners. The primary objective of this study was to compare proximal femoral head penetration into the liner between a) two cross-linked polyethylene (XLPE) liners (vitamin E-doped (vE-PE)) versus standard XLPE liners, and b) two modular femoral head diameters (32 mm and 36 mm). Patients scheduled for a THA were randomized to receive a vE-PE or XLPE liner with a 32 mm or 36 mm metal head (four intervention groups in a 2 × 2 factorial design). Head penetration and acetabular component migration were measured using radiostereometric analysis at baseline, three, 12, 24, and 60 months postoperatively. The Harris Hip Score, University of California, Los Angeles (UCLA) Activity Score, EuroQol five-dimension questionnaire (EQ-5D), and 36-Item Short-Form Health Survey questionnaire (SF-36) were assessed at baseline, three, 12, 36, and 60 months.Aims
Methods
The purpose of this study was to validate the diagnosis of periprosthetic
joint infection (PJI) in the Danish Hip Arthroplasty Register (DHR). We identified a cohort of patients from the DHR who had undergone
primary total hip arthroplasty (THA) since 1 January 2005 and followed
them until first-time revision, death, emigration or until 31 December
2012. Revision for PJI, as registered in the DHR, was validated against
a benchmark which included information from microbiology databases,
prescription registers, clinical biochemistry registers and clinical
records. We estimated the sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) for PJI in the DHR
alone and in the DHR when combined with microbiology databases.Aims
Patients and Methods
Radiostereometric analysis (RSA) can detect early
micromovement in unstable implant designs which are likely subsequently
to have a high failure rate. In 2010, the Articular Surface Replacement
(ASR) was withdrawn because of a high failure rate. In 19 ASR femoral
components, the mean micromovement over the first two years after implantation
was 0.107 mm ( We conclude that the ASR femoral component achieves initial stability
and that early migration is not the mode of failure for this resurfacing
arthroplasty.
The Oxford hip score (OHS) is a 12-item questionnaire designed
and developed to assess function and pain from the perspective of
patients who are undergoing total hip replacement (THR). The OHS
has been shown to be consistent, reliable, valid and sensitive to
clinical change following THR. It has been translated into different
languages, but no adequately translated, adapted and validated Danish
language version exists. The OHS was translated and cross-culturally adapted into Danish
from the original English version, using methods based on best-practice
guidelines. The translation was tested for psychometric quality
in patients drawn from a cohort from the Danish Hip Arthroplasty
Register (DHR).Objectives
Methods
It is accepted that resurfacing hip replacement
preserves the bone mineral density (BMD) of the femur better than total
hip replacement (THR). However, no studies have investigated any
possible difference on the acetabular side. Between April 2007 and March 2009, 39 patients were randomised
into two groups to receive either a resurfacing or a THR and were
followed for two years. One patient’s resurfacing subsequently failed,
leaving 19 patients in each group. Resurfaced replacements maintained proximal femoral BMD and,
compared with THR, had an increased bone mineral density in Gruen
zones 2, 3, 6, and particularly zone 7, with a gain of 7.5% (95%
confidence interval (CI) 2.6 to 12.5) compared with a loss of 14.6%
(95% CI 7.6 to 21.6). Resurfacing replacements maintained the BMD
of the medial femoral neck and increased that in the lateral zones
between 12.8% (95% CI 4.3 to 21.4) and 25.9% (95% CI 7.1 to 44.6). On the acetabular side, BMD was similar in every zone at each
point in time. The mean BMD of all acetabular regions in the resurfaced
group was reduced to 96.2% (95% CI 93.7 to 98.6) and for the total
hip replacement group to 97.6% (95% CI 93.7 to 101.5) (p = 0.4863).
A mean total loss of 3.7% (95% CI 1.0 to 6.5) and 4.9% (95% CI 0.8
to 9.0) of BMD was found above the acetabular component in W1 and
10.2% (95% CI 0.9 to 19.4) and 9.1% (95% CI 3.8 to 14.4) medial
to the implant in W2 for resurfaced replacements and THRs respectively.
Resurfacing resulted in a mean loss of BMD of 6.7% (95% CI 0.7 to
12.7) in W3 but the BMD inferior to the acetabular component was
maintained in both groups. These results suggest that the ability of a resurfacing hip replacement
to preserve BMD only applies to the femoral side.
We evaluated the short-term of 0 to 90 days and the longer term, up to 12.7 years, mortality for patients undergoing primary total hip replacement (THR) in Denmark in comparison to the general population. Through the Danish Hip Arthroplasty Registry we identified all primary THRs undertaken for osteoarthritis between 1 January 1995 and 31 December 2006. Each patient (n = 44 558) was matched at the time of surgery with three people from the general population (n = 133 674). We estimated mortality rates and mortality rate ratios with 95% confidence intervals for THR patients compared with the general population. There was a one-month period of increased mortality immediately after surgery among THR patients, but overall short-term mortality (0 to 90 days) was significantly lower (mortality rate ratio 0.8; 95% confidence interval 0.7 to 0.9). However, THR surgery was associated with increased short-term mortality in subjects under 60 years old, and among THR patients without comorbidity. Long-term mortality was lower among THR patients than in controls (mortality rate ratio 0.7; 95% confidence interval 0.7 to 0.7). Overall, THR was associated with lower short- and long-term mortality among patients with osteoarthritis. Younger patients and patients without comorbidity before surgery may also experience increased mortality after THR surgery, although the absolute risk of death is small.
We examined the association between patient-related factors and the risk of initial, short- and long-term implant failure after primary total hip replacement. We used data from the Danish Hip Arthroplasty Registry between 1 January 1995 and 31 December 2002, which gave us a total of 36 984 patients. Separate analyses were carried out for three follow-up periods: 0 to 30 days, 31 days to six months (short term), and six months to 8.6 years after primary total hip replacement (long term). The outcome measure was defined as time to failure, which included re-operation with open surgery for any reason. Male gender and a high Charlson co-morbidity index score were strongly predictive for failure, irrespective of the period of follow-up. Age and diagnosis at primary total hip replacement were identified as time-dependent predictive factors of failure. During the first 30 days after primary total hip replacement, an age of 80 years or more and hip replacement undertaken as a sequela of trauma, for avascular necrosis or paediatric conditions, were associated with an increased risk of failure. However, during six months to 8.6 years after surgery, being less than 60 years old was associated with an increased risk of failure, whereas none of the diagnoses for primary total hip replacement appeared to be independent predictors.