header advert
Results 1 - 4 of 4
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 107 - 107
4 Apr 2023
Li C Ding Y Li S Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis, the most common degenerative joint disease, significantly impairs life quality and labor capability of patients. Synovial inflammation, initiated by HMGB1 (High mobility group box 1)-induced activation of macrophage, precedes other pathological changes. As an upstream regulator of NF-κB (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) signaling pathway, TAK1 (TGF-β activated kinase 1) participates in macrophage activation, while its function in osteoarthritis remains unveiled. This study aims to investigate the role of TAK1 in the pathogenesis of osteoarthritis via both in vitro and in vivo approaches.

We performed immunohistochemical staining for TAK1 in synovial tissue, both in osteoarthritis patients and healthy control. Besides, immunofluorescence staining for F4/80 as macrophage marker and TAK1 were conducted as well. TAK1 expression was examined in RAW264.7 macrophages stimulated by HMGB1 via qPCR (Quantitative polymerase chain reaction) and Western blotting, and the effect of TAK1 inhibitor (5z-7 oxozeaenol) on TNF-α production was evaluated by immunofluorescence staining. Further, we explored the influence of intra-articular shRNA (short hairpin RNA) targeting TAK1 on collagenase-induced osteoarthritis in mice.

Immunohistochemical staining confirmed significant elevation of TAK1 in osteoarthritic synovium, and immunofluorescence staining suggested macrophages as predominant residence of TAK1. In HMGB1-stimulated RAW264.7 macrophages, TAK1 expression was up-regulated both in mRNA and protein level. Besides, TAK1 inhibitor significantly impairs the production of TNF-α by macrophages upon HMGB1 stimulation. Moreover, intra-articular injection of lentivirus loaded with shRNA targeting TAK1 (sh-TAK1) reduced peri-articular osteophyte formation in collagenase-induced osteoarthritis in mice.

TAK1 exerts a potent role in the pathogenesis of osteoarthritis by mediating the activation of macrophages.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 109 - 109
4 Apr 2023
Ouyang Z Ding Y Lin S Wen Z
Full Access

Aseptic inflammation is the main factor causing aseptic loosening of artificial joints. Studies have shown that inflammatory cells can activate STING (stimulator of interferon genes, STING) after being stressed. This study aims to explore the specific mechanism of STING in aseptic loosening of artificial joints, and provide new strategies for disease prevention.

Titanium particles with a diameter of 1.2-10 μm were prepared to stimulate macrophages (RAW 264.7) to simulate the periprosthetic microenvironment. A lentiviral vector targeting the STING gene was designed and transfected into macrophages to construct a cell line targeting STING knockdown. The expression and secretion levels of TNF-α were detected by qPCR and ELISA, the activation levels of inflammatory pathways (NF-κB, IRF3, etc.) were detected by western blot, and the nucleus translocation of P65 and IRF3 was observed by cellular immunofluorescence.

After titanium particles stimulated macrophages, qPCR and ELISA showed that the transcription and secretion levels of TNF-α were significantly increased. Western blot showed that titanium particle stimulation could increase the phosphorylation levels of NF-κB and IRF3 pathways. While knockdown of STING can significantly reduce titanium particle-induced TNF production, attenuate the activation levels of NF-κB and IRF3 pathways as well as the nucleus translocation of P65 and IRF3.

Conclusions: STING positively regulates the level of inflammation in macrophages induced by titanium particles, and targeted inhibition of STING can reduce inflammation, which may delay the progression of aseptic loosening of artificial joints.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 111 - 111
4 Apr 2023
Ding Y Wu C Li S Sun Y Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis (OA), the most prevalent chronic joint disease, represents a relevant social and economic burden worldwide. Human umbilical cord mesenchymal stem cells (HUCMSCs) have been used for injection into the joint cavity to treat OA. The aim of this article is to clarify whether Huc-MSCs derived exosomes could inhibit the progression of OA and the mechanism in this process.

A rabbit OA model was established by the transection of the anterior cruciate ligament. The effects of HUCMSCs or exosomes derived from HUCMSCs on repairing articular cartilage of knee osteoarthritis was examined by micro-CT. Immunohistochemical experiments were used to confirm the expression of relevant inflammatory molecules in OA. In vitro experiments, Transwell assay was used to assess the migration of macrophages induced by TNF-a.

Results showed that a large number of macrophages migrated in arthcular cavity in OA model in vivo, while local injection of HUCMSCs and exosomes did repair the articular cartilage. Immunohistochemical results suggested that the expression of CCL2 and CD68 in the OA rabbit model increased significantly, but was significantly reduced by HUCMSCs or exosomes. Transwell assay showed that both HUCMSCs and exosomes can effectively inhibit the migration of macrophage.

In conclusion, the exosomes derived by HUCMSCs might might rescue cartilage defects in rabbit through its anti-inflammatory effects through inhibiting CCL2.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 108 - 108
4 Apr 2023
Wen Z Ding Y Lin S Li C Ouyang Z
Full Access

As peri-prosthetic aseptic loosening is one of the main causes of implant failure, inhibiting wear particles induced macrophages inflammation is considered as a promising therapy for AL to expand the lifespan of implant. Here, we aim at exploring the role of p110δ, a member of class IA PI3K family, and Krüppel-like factor 4 (KLF4) in titanium particles (TiPs) induced macrophages-inflammation and osteolysis.

Firstly, IC87114, the inhibitor of p110δ and siRNA targeting p110δ were applied and experiments including ELISA and immunofluorescence assay were conducted to explore the role of p110δ. Sequentially, KLF4 was predicted as the transcription factor of p110δ and the relation was confirmed by dual luciferase reporter assay. Next, assays including RT-PCR, western blotting and flow cytometry were performed to ensure the specific role of KLF4. Finally, TiPs-induced mice cranial osteolysis model was established, and micro-CT scanning and immunohistochemistry assay were performed to reveal the role of p110δ and KLF4 in vivo.

Here, we found that p110δ was upregulated in TiPs-stimulated macrophages. The inhibition of p110δ or knockdown of p110δ could significantly dampen the TiPs-induced secretion of TNFα and IL-6. Further mechanistic studies confirmed that p110δ was responsible for TNFα and IL-6 trafficking out of Golgi complex without affecting their expression in TiPs-treated macrophages. Additionally, we explored the upstream regulators and confirmed that Krüppel-like factor 4 (KLF4) was the transcription repressor of p110δ. Apart from that, KLF4, targeted by miR-92a, could also attenuate TiPs-induced inflammation by mediating NF-κB pathway and M1/M2 polarization. By the establishment of TiPs-induced mice cranial osteolysis model, we found that KLF4 knockdown exacerbated TiPs-induced osteolysis which was strikingly ameliorated by knockdown of p110δ.

In summary, our study suggests the key role of miR-92a/KLF4/p110δ signal in TiPs-induced macrophages inflammation and osteolysis.