Restoration of native Coronal Plane Alignment of the Knee (CPAK) phenotype is a strategy suggested to achieve better satisfaction. The aim of this study was to investigate the influence of changes in CPAK classification on patient-reported outcome measures (PROMs) and survivorship in a large cohort of manual mechanically aligned (MA) cemented TKAs. A retrospective analysis of 1062 consecutive cemented TKAs using MA philosophy at a single institution. Pre- and post-operative hip-knee-ankle radiographs were classified using the CPAK classification. Oxford Knee Score (OKS) and patient satisfaction (4-point-Likert scale) were collected prospectively. Implant survival data was obtained from our national arthroplasty database. We compared the outcomes of patients who maintained or changed their CPAK classification following TKA. Satisfaction was analysed using chi-square test, and OKS was analysed using Mann-Whitney test. Pre-operatively, most patients were CPAK type-I (38.8%). 85.5% of patients changed their CPAK type post-operatively, with CPAK type-V observed in 41.2% of these. Significantly better satisfaction (p=0.033) and OKS (p=0.021) were observed at one-year follow-up in patients who changed CPAK type, although the difference was below OKS minimally important clinical difference. There was no difference in satisfaction (p=0.73) and OKS (p=0.26) at one year between CPAK-V and non-V classifications. Post-operative CPAK type had no correlation with satisfaction and OKS. 12 TKAs (1.1%) were revised within 10 years (3 septic). In this large cohort of MA-TKA, excellent survivorship was observed at 10 years, with no demonstrable difference in outcome related to the final CPAK phenotype or change in phenotype.
Accurate evaluation of lower limb coronal alignment is essential for effective pre-operative planning of knee arthroplasty. Weightbearing hip-knee-ankle (HKA) radiographs are considered the gold standard. Mako SmartRobotics uses CT-based navigation to provide intra-operative data on lower limb coronal alignment during robotic assisted knee arthroplasty. This study aimed to compare the correlation between the two methods in assessing coronal plane alignment. Patients undergoing Mako partial (PKA) or total knee arthroplasty (TKA) were identified from our hospital database. The hospital PACS system was used to measure pre-operative coronal plane alignment on HKA radiographs. This data was correlated to the intraoperative deformity assessment during Mako PKA and TKA surgery. 443 consecutive Mako knee arthroplasties were performed between November 2019 and December 2021. Weightbearing HKA radiographs were done in 56% of cases. Data for intraoperative coronal plane alignment was available for 414 patients. 378 knees were aligned in varus, and 36 in valgus. Mean varus deformity was 7.46° (SD 3.89) on HKA vs 7.13° (SD 3.56) on Mako intraoperative assessment, with a moderate correlation (R= 0.50, p<0.0001). Intraoperative varus deformity of 0-4° correlated to HKA measured varus (within 3°) in 60% of cases, compared to 28% for 5-9°, 17% for 10-14°, and in no cases with >15° deformity. Mean valgus deformity was 6.44° (SD 4.68) on HKA vs 4.75° (SD 3.79) for Mako, with poor correlation (R=0.18, p=0.38). In this series, the correlation between weightbearing HKA radiographs and intraoperative alignment assessment using Mako SmartRobotics appears to be poor, with greater deformities having poorer correlation.