The increased incidence of type 2 Diabetes Mellitus is associated with an impaired skeletal structure and a higher prevalence of bone fractures. Sclerostin is a negative regulator of bone formation produced by osteocytes and there is recent evidence that its expression in serum is elevated in diabetic patients compared to control subjects. In this study, we test whether hyperglycemia affects serum and bone sclerostin levels in a rat model of type 2 Diabetes as well as sclerostin production by osteoblasts in culture. We used Zucker diabetic fatty (ZDF) male rats (n=6) that spontaneously develop obesity and frank diabetes around 8–9 weeks of age and Zucker lean rats as controls (n=6) to examine sclerostin expression in serum at 9, 11 and 13 weeks using a specific ELISA. Sclerostin expression in bone tibiae was examined at 12 weeks using immunocytochemistry. Rat osteoblast-like cells UMR-106 were cultured in the presence of increasing concentrations of glucose (5, 11, 22 and 44 mM) during 48 hours and sclerostin mRNA expression and release in the supernatant determined by quantitative PCR and ELISA, respectively. Our results show that serum sclerostin levels are higher in the diabetic rats compared to lean rats at 9 weeks (+ 140%, p<0.01). Our preliminary results using immunocytochemistry for sclerostin did not show any major difference in sclerostin expression in tibiae of diabetic rats compared to lean ones, although we observed many osteocytic empty lacunae in cortical bone from diabetic rats. Glucose dose-dependent stimulated sclerostin mRNA and protein production in mature UMR106 cells while it had no effect on osteocalcin expression. Altogether, our data suggest that sclerostin production by mature osteoblasts is increased by hyperglycemia in vitro and enhanced in serum of diabetic rats. Furthers studies are required to determine whether sclerostin could contribute to the deleterious effect of Diabetes on bone.
Medial We prospectively evaluated 12 patients undergoing flatfoot reconstruction. Each patient had a preoperative AOFAS hindfoot score, pedobariographs and antero-posterior and lateral radiographs. This was repeated 6 months following surgery.Introduction
Materials and Methods
Medial Displacement Osteotomy (MDO) of the os calcis is used to correct the hind foot valgus in a flat foot deformity. Screw fixation is commonly used although contemporary locking plate systems are now available. This study tested the hypothesis that a 10mm MDO would support a higher load to failure with a locked step plate than with a single cannulated screw. Eight pairs of embalmed cadaveric limbs harvested 10cm below the knee joint were axially loaded using a mechanical testing rig. Two pairs served as non-operated controls loaded to 4500N. The remaining limbs in pairs underwent a 10mm MDO of the os calcis and were stabilised with a locked step plate or a 7mm cannulated compression screw. One pair was loaded to 1600N (twice body weight) as a pilot study and the remaining 5 pairs were loaded to failure up to 4500N. The force-displacement curve and maximum force were correlated with observations of the mechanism of failure. In one pair of control limbs, failure occurred with fractures through both os calcis bones, whilst the other pair did not undergo mechanical failure to 4500N. In the pilot osteotomy, the plate did not fail whilst loss of fixation with the screw was observed below 1600N. For the remaining five pairs, the median (with 95% Confidence Intervals) of the maximum force under load to failure were 1778.81N (1099.39 – 2311.66) and 826.13N (287.52 – 1606.67) for the plate and screw respectively (Wilcoxon Signed Rank test p=0.043). In those with screw fixation loaded to 4500N, the tuberosity fragment consistently failed by rotation and angulation into varus.Materials and Methods
Results
Although Bohler’s &
Gissane’s angles are measured in adult calcaneal fractures, it is not known if such measurements are reliable in children nor how such measurements vary with the age of the child. The Picture Archiving and Communications System (PACS) databases of 2 London Teaching Hospitals were searched and all children who had a lateral ankle xray taken as part of their attendance to the A&
E department were identified. Films were excluded if there was a fracture of the calcaneus or if the film was oblique or of poor quality. Bohler’s and Gissane’s angles were measured using the image viewer software. All patients’ films were measured on two separate occasions and by two separate authors to allow calculation of inter- and intra-observer variation. Interclass Correlation Coefficients (ICC) were used to assess the reliability of the measurements. 347 children were identified and after exclusions, 218 films were used for the study. The overall ICC for Bohler’s angle inter-obsever error was 0.91 and for intra-observer error was 0.92, giving excellent correlation. This reliability was maintained across the age groups. Gissane’s angle inter-observer error was very poor and the intra-observer error poor across the age groups, although accuracy did improve as the patients approached maturity. Further analysis of the Bohler’s angle showed a significant variation in the mean angle with age. Contrary to published opinion, the angle is not uniformly lower than that of adults but varies with age, peaking towards the end of the first decade before attaining adult values. We feel that measurement of Gissane’s angle is unreliable in children but measurement of Bohler’s angle is accurate and reproducible. Bohler’s angle varies with age and knowledge of Bohler’s angle variation is important in the evaluation of os calcis fractures in children.